• Home
  • Browse Issues
    • In Press
    • Current Issue
    • Special Issue
    • Past Issues
  • About
    • Editorial Board
    • Bibliographic Listings
    • Peer Review Process
    • Open Access Policy
    • Plagiarism Policy
    • Copyright Policy
    • Retraction Policy
    • Editorial Policy
    • Disclaimer
  • Author Guidelines
  • Submit Article
  • Contact

Subscribe to Updates

Get the latest creative news from FooBar about art, design and business.

Facebook Twitter Instagram
International Journal of Pharmaceutical Investigation
Facebook Twitter Instagram
Submit Article Author Guidelines
  • Home
  • Browse Issues
    1. In Press
    2. Current Issue
    3. Special Issue
    4. Past Issues
    5. View All

    A Study of Nitrosamine Impurities and Regulations Governing their Presence in Drug Products

    September 22, 2023

    Phyto-Pharmacological Importance with Nutritional Potential of Eleusine coracana Linn.: A Review

    September 20, 2023

    Type3c Diabetes Mellitus

    September 20, 2023

    A Study on BioBetters: Various Aspects and Regulatory Approval Process

    September 20, 2023

    A Study of Nitrosamine Impurities and Regulations Governing their Presence in Drug Products

    September 22, 2023

    Phyto-Pharmacological Importance with Nutritional Potential of Eleusine coracana Linn.: A Review

    September 20, 2023

    Type3c Diabetes Mellitus

    September 20, 2023

    A Study on BioBetters: Various Aspects and Regulatory Approval Process

    September 20, 2023

    A Study of Nitrosamine Impurities and Regulations Governing their Presence in Drug Products

    September 22, 2023

    Phyto-Pharmacological Importance with Nutritional Potential of Eleusine coracana Linn.: A Review

    September 20, 2023

    Type3c Diabetes Mellitus

    September 20, 2023

    A Study on BioBetters: Various Aspects and Regulatory Approval Process

    September 20, 2023

    A Study of Nitrosamine Impurities and Regulations Governing their Presence in Drug Products

    September 22, 2023

    Phyto-Pharmacological Importance with Nutritional Potential of Eleusine coracana Linn.: A Review

    September 20, 2023

    Type3c Diabetes Mellitus

    September 20, 2023

    A Study on BioBetters: Various Aspects and Regulatory Approval Process

    September 20, 2023

    A Study of Nitrosamine Impurities and Regulations Governing their Presence in Drug Products

    September 22, 2023

    Phyto-Pharmacological Importance with Nutritional Potential of Eleusine coracana Linn.: A Review

    September 20, 2023

    Type3c Diabetes Mellitus

    September 20, 2023

    A Study on BioBetters: Various Aspects and Regulatory Approval Process

    September 20, 2023
  • About
    • Editorial Board
    • Bibliographic Listings
    • Peer Review Process
    • Open Access Policy
    • Plagiarism Policy
    • Copyright Policy
    • Retraction Policy
    • Editorial Policy
    • Disclaimer
  • Author Guidelines
  • Submit Article
  • Contact
International Journal of Pharmaceutical Investigation
Home»JPHI»Vol 8 Issue 3»Molecular Docking Studies of Ephedrine, Eugenol and their Derivatives as Arginase Inhibitors: Implications in Asthma
Vol 8 Issue 3

Molecular Docking Studies of Ephedrine, Eugenol and their Derivatives as Arginase Inhibitors: Implications in Asthma

July 1, 2018Updated:June 2, 20232 Mins Read
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email

International Journal of Pharmaceutical Investigation, 2018, 8, 3, 130-137. 
DOI: 10.4103/jphi.JPHI_25_18
Published: July 2018
Type: Original Article

Authors: 

Suhasini Donthi
Department of Biotechnology, Sreenidhi Institute of Science and Technology, India.

Jayasree Ganugapati
Department of Biotechnology, Sreenidhi Institute of Science and Technology, India.

Vijayalakshmi Valluri
Immunology Unit, Bhagwan Mahavir Hospital and Research Center, India.

Ramesh Macha
Department of Chemistry, Osmania University, Hyderabad, Telangana, India.

Krovvidi S. R. Sivasai
Department of Biotechnology, Sreenidhi Institute of Science and Technology, India.

ABSTRACT

Background: Arginine being a common substrate for arginase and nitric oxide synthase (NOS) an imbalance between enzymes could lead to a shift in airway responses. Reports suggest that increased arginase reduces the substrate availability to NOS and attributes to the airway hyperresponsiveness. Hence, inhibition of arginase might enhance the bioavailability of arginine to NOS and generates nitric oxide (NO) a bronchodilator. Molecules from Ephedra and Eugenia caryophyllus are documented for bronchodilator properties. However, the mechanism of action of these molecules for enhancing bronchodilation is not well characterized. The objective of the present study is to assess whether these molecules could inhibit the arginase by binding at its active site and helps in bronchodilation using in silico approach. Methods: The crystal structures of the arginase and NOS enzymes were selected from the protein database. The molecules from Ephedra and Eugenia caryophyllus were obtained from Pubchem. Drug likeliness and bioactivity of the molecules were assessed by Molinspiration. The successful molecules were docked with active sites of enzymes using docking software, and the docked complexes were analyzed using Accelrys Discovery Studio. Results: Molecules from Ephedra and Eugenia caryophyllus were able to interact to arginase at the active site whereas away from the active site in case of NOS. The molecules showed differential binding affinities, and some of them had higher binding affinity than substrate arginine. Conclusion: In silico study suggests that molecules of Ephedra and Eugenia were capable of blocking the active site of arginase. We speculate that if these molecules are used as therapeutics, they could inhibit the arginase activity and this might increase arginine availability to NOS to produce NO which acts as bronchodilator. Our study suggests that molecules which bind to active site of arginine and do not affect the active site of NOS might be the potential molecules for arginase associated asthma.

Keywords: ArgusLab, Cambridge Crystallographic Data Center Genetic Optimization for Ligand Docking, Discovery studio, Genetic optimization, Virtual screening.

Original Article
Previous ArticleSynthesis, Antimicrobial Activity and Docking Study of Some N3, N6‑diphenylpyridazine‑3,6‑diamine Derivatives as Dihydrofolate Reductase Inhibitors
Next Article Anti‑osteoporotic Activity of Isoflavones from Iris Germanica Targeting NF‑kappaB

Related Posts

Impact of Mobile Radiations on Gliclazide Tablet Formulation

July 21, 2023

Formulation and in vitro Evaluation of pH Dependent Colon Targeted Controlled Release Tablet of Mesalamine Containing Cyamopsis tetragonoloba Gum and Sodium Alginate

July 21, 2023

Formulation, Development and Characterization of Liposome-based Gel of Eberconazole Nitrate for Topical Delivery

July 21, 2023
Download PDF
Cite this Article
Citation Output

Read in Readcube
  • Download PDF
  • ReadCube
Citations & Metrics
Article Metrics
  • Dimensions Metrics
  • Page Views
  • Related
Total Views 0
Last Month Views 0
Click for PLUM.MX Metrics Search this article in Google Scholar Related Articles in Google Scholar Search related in PUBMED


About
About

publishing peer-reviewed scholarly reviews, themed issues and research articles within the entire scope of the Pharmaceutical field. The journal particularly aims to foster the dissemination of scientific information by publishing manuscripts related to Pharmacy and Related Fields.

We're accepting new submissions right now.

Facebook Twitter RSS
Editor Picks

Overview on Evolving Variants of Novel Coronavirus and Control Measures in India

July 5, 2023

An Overview of the Various Appropriate Types of Cell Lines for the Production of Monoclonal Antibodies

July 5, 2023

Ashwagandha: A Flagship Herb of Ayurveda from Past to Present Nano Era

July 5, 2023

Dental Pulp Stem Cells: Biology and Promise for Regenerative Medicine

July 5, 2023
STAY CONNECTED

Contact Editor-In-Chief
Editor, International Journal of Pharm Investigation
#9, Vinnse Tower, Wheeler Road Extn.
St. Thomas Town, 560084, Bangalore, INDIA
Email: editor@jpionline.org

© 2023 Phcog.Net | Published by : EManuscript.
  • Home
  • Submit Article
  • Disclaimer
  • Contact

Type above and press Enter to search. Press Esc to cancel.