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ABSTRACT
Background: The presence of antibiotic residues in water is a matter of concern for both public 
health and the environment, owing to the phenomenon of antibiotic resistance. One of the 
Advanced Oxidation Processes (AOPs) employed for the removal of refractory pollutants in the 
aqueous matrix is sonication. The sonochemical processes have been found to have a multitude 
of advantages, including the mitigation or complete elimination of secondary pollutants, 
energy conservation, enhanced safety, and improved cleanliness. Methodology: Antibiotic  
degradation mechanisms are thoroughly reviewed in this article, with a particular focus on 
activating Persulfate (PS) and Peroxymonosulfate (PMS) using sonication from 2000 to 2023. The 
analysis of articles retrieved from Google Scholar, Web of Science, and Scopus was conducted 
using the suggested reporting items for systematic review and meta-analysis methodology. 
A total of 195 published publications were found after the initial search. Following a  
comprehensive evaluation, a total of 58 publications were chosen for the investigation of the 
utilization of ultrasound-assisted heterogeneous activation in PS and PMS operations. Results: 
Our findings were indicative of a discernible increase in publications in recent years, especially 
between 2017 and 2023. In addition, the elements that contribute to the effective degradation 
of antibiotics, such as pH, initial antibiotics concentration, PMS and PS dosage, contact time, and 
Ultrasonic frequency intensity, were analyzed and reviewed in this review study. Conclusion: This 
method has successfully removed antibiotics from aqueous solutions and hospital wastewater

Keywords: Persulfate, Peroxymonosulfate, Antibiotics, Sonication, Wastewater, Degradation.

INTRODUCTION

The widespread use of antibiotics to safeguard human health 
and enhance animal growth has been found to be an undeniable 
necessity.1,2 It is a well-established fact that a considerable 
proportion of antibiotics remain incompletely metabolized inside 
the human and animal physiological systems. Consequently, 
these antibiotics are inevitably discharged into sewage treatment 
facilities through the excretion of urine and feces, ultimately 
finding their way into the surrounding environment.3,4 The 

world's daily antibiotic consumption has surged from 21.1 
billion tones in 2000 to 34.8 billion tones in 2015.5 According to 
estimates, the worldwide usage of antibiotics is predicted to rise 
by 67% by 2030, with countries such as China, the United States, 
India, Brazil, and Germany being the major consumers.6,7 One 
possible consequence of overusing antibiotics is the growth of 
antibiotic-resistant microorganisms and environmental damage.8

At present, there exist several treatment methods for eliminating 
antibiotics from wastewater, such as biological treatment, 
chemical treatment, adsorption, and so on.9 Nonetheless, 
adsorption can only isolate antibiotics from wastewater without 
fully degrading them.10 In the case of biological treatment 
methods, the inhibition of bacterial activity by antibiotics has 
led to diminished efficiencies.11,12 AOPs are highly effective in 
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generating extremely reactive OH•, SO4
•−, and O2

•− radicals; 
they are capable of efficiently decomposing antibiotics into 
significantly less toxic byproducts.13,14

Catalytic, physical, ozone-based, ultraviolet-based, and 
electrochemical-based AOPs are the five main categories into 
which AOPs are typically separated. Nevertheless, the acidic 
conditions required for conventional Fenton-AOPs severely 
limit their practical application across different industries.15-17 
Additionally, the disposal of considerable amounts of 
iron-containing sludge poses significant obstacles.18 Surprisingly, 
persulfate-based AOPs represent a potential solution for 
addressing the aforementioned issues.19 In recent times, the 
heightened redox potential (E0=2.5-3.1 V) and robust oxidation 
capacity exhibited by the sulfate radical have contributed 
to its growing prominence.20 Activating PS (e.g., PMS and 
Peroxydisulfate (PDS)) in the presence of electricity, heat, ozone, 
ultraviolet, ultrasound, carbon materials, and transition metals 
oxides can produce reactive radicals.21-23

Upon thorough analysis of the provided information, two 
noteworthy conclusions have been drawn. Firstly, it has been 
found that antibiotic have been recognized in surface water, 
groundwater, and wastewater, posing significant hazards to 
both human and aquatic life.24-26 (II) Persulfate-based Secondly, 
persulfate-based AOPs offer an auspicious solution for removing 
these pollutants.27,28 However, a comprehensive review of the 
various types of sonication-activated persulfate AOPs used for 
degrading different antibiotics is yet to be conducted. Hence, the 
objective of this work is to provide an overview of the degradation 
mechanisms involved in using sonication-activated persulfate 
AOPs to break down antibiotics.

MATERIALS AND METHODS

The purpose of this systematic review was to analyze the 
antibiotic degradation in aqueous solutions through the use 
of sonication with PS and PMS. The study examined articles 
published in electronic form from 2000 until the end of 
2023 in various international databases, including Google 
Scholar, Scopus, PubMed, Web of Science, and Science Direct. 
A search was conducted using keywords such as antibiotic, 
degradation, Peroxymonosulfate (PMS), Peroxydisulfate (PDS), 
sonication-activated persulfate AOPs, and removal, with the use 
of AND/OR operators in the title and abstract.

RESULTS

The study aimed to investigate the degradation of antibiotics 
through the sonolysis process with the assistance of PS or PMS. 
According to the report by Safari et al., sonication with PS in a 
100 mL solution of TC for 120 min at 500 W and 35 kHz under 
a pH of 10 resulted in the removal of 94.4% of 30 mg/L TC. The 
removal efficiencies for TOC and COD were 59.7% and 72.8%, 
respectively.29 According to Yin et al., they achieved impressive 

results in their experiment on the removal of 50 mg/L SMZ. 
Using sonication alone, PMS alone, and Sono/PMS, they were 
able to achieve removal efficiencies of 8.6%, 54.3%, and 99.6%, 
respectively; their result was obtained at pH 7.5 under 600 W and 
20 kHz for 30 min.30 The process of destroying antibiotics through 
sonolysis with PS or PMS is illustrated in Figure 1. Studies have 
been conducted on the sonochemical degradation of antibiotics 
in aqueous solutions with PS. Table 1 provides a summary of the 
utilization of sonication in breaking down antibiotics utilizing 
PS or Oxone.25-33 Under specified conditions represented in  
Table 1, Combining sonication with PS results in greater antibiotic 
degradation compared to sonication or oxidation alone, while 
achieving partial mineralization.31,32 Using sono/PS, the removal 
efficiency of TC was 96.5%, while 61.2% of TOC and 74% of COD 
were removed.33 Nevertheless, many antibiotics, like TC, exhibit 
resistance to degradation when subjected to a hybrid system, 
even after 240 min.34 Furthermore, the TC degradation pathway 
by the sono/S2O8

2− process (as depicted in Figure 2) illustrates the 
presence of the protonated TC molecular ion and four primary 
by-products.33

By incorporating PMS and sono/PS, significant enhancement in 
the antibiotic removal efficiency from aqueous solutions could be 
achieved.20,35 Based on observations, neither the presence of Fe0 
nor PS alone is sufficient to offer substantial SDZ degradation. 
Similarly, single use of sonication could only lead to marginal 
degradation of SDZ with a removal efficiency of 9.7% after 1 hr. 
In addition, the removal efficiency of SDZ was only 9.8% and 
13.7% in 1 hr when two components, e.g., sono/PS and sono/Fe0, 
were combined. The further degradation of SDZ was impeded by 
the presence of surface passivation, which effectively prohibited 
the dissolution of Fe0 and the release of Fe2+. Thus, in order to 
increase mass transfer and remove the passivation coating, 
sonication was employed. This resulted in removing 95.7% SDZ 
after 1 h in the sono/Fe0/PS process.36 Eliminating TC using only 
PS or sonication is also challenging. Moreover, the Fe3O4 catalyst 
alone or in combination with sonication could not remove 
much TC because of the insufficient TC adsorption by Fe3O4 
and the incomplete generation of active species. Nonetheless, 
after 90 min, the Fe3O4/PS and sono/PS exhibited the capability 
of enhancing the TC removal efficiency to 50.5% and 51.5%, 
respectively, by activating the catalyst through sonication and 
producing more SO4

•− and •OH on the catalyst surface. Moreover, 
the implementation of sono/Fe3O4/PS was found to be highly 
effective, with a TC removal efficiency of 89%. This was achieved 
through the activating PS by Fe3O4 and sonication, which 
effectively produced a greater SO4

•−.35 Also, The parameters that 
are effective for removing antibiotics are presented in Table 2.
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DISCUSSION

Advanced oxidation processes that use sulfate radicals are an 
emerging technology for treating wastewater.36,37 In this method, 
PS, SO5

2− or S2O8
2− or PMS, HSO5

− can be activated to form 
sulfate radicals (SO4

•−) by various means, such as UV radiation, 
sonication, heat, alkaline pH, or transition metal ions.38-40 Oxone, 
which is the triple salt KHSO5

•0.5 KHSO4
•0.5 K2SO4, is a more 

stable.41 The sulfate radical-based AOPs are more effective and 
potent than •OH-based AOPs; this is derived from more stability 
of SO4

•−, compared to •OH, during degradation reactions so that 
it has exhibited an outstanding oxidation ability in an extensive 
range of pH (2-8).42,43

•OH exhibits a redox potential range of 1.89-2.8 V, which classifies 
it as a highly effective oxidant. SO4

•− is produced from PS, which 
has a standard redox potential of 2.01 V, exceeding that of PMS 
(1.81 V).44,45

When compared, it can be observed that SO4
•− possesses a redox 

potential that is either similar or greater (ranging from 1.81-3.1 
V) than that of other substances, depending on its method of 
activation.46,47 SO4

•− is produced from PS, which has a standard 
redox potential of 2.01 V, exceeding that of PMS (1.81 V).48 
The removal efficiency of Acid Orange 7 dye by heat activation 
follows the order of PS > PMS > H2O2. However, it is PS > H2O2 

> PMS after employing UV for activation.48 Achieving a removal 
efficiency of 95.3% and 58.4% for 25 mg/L furfural was possible 

under sonication activation using PS and PMS, respectively.49 
The order of SMX removal efficiency by UV activation was found 
to be different from that of other factors, with PMS showing 
the highest efficiency followed by PS and H2O2.

42 This suggests 
that the contribution of the entire oxidation system on changing 
oxidation potential of PS and PMS.50

Sonication is an effective method for eliminating resistant 
pollutants. It also triggers the production of SO4

•− through the 
reactions of PS and PMS with •OH, which are generated in situ 
during sonication. These reactions can be represented by Eqs (1) 
to (6).51-53

S2O8
2− + •OH HSO4

− +SO4
•− + 0.5 O2 (1)

HSO5
− + US SO4

•− + •OH (2)

HSO5
− + SO4

•− + SO4
2− + H+ (3)

S2O8
2−+ US/thermal 2 SO4

•− (4)

SO4
•− + •OH HSO4

− + 0.5 O2 (5)

S2O8
2−+ SO4

•− SO4
2− + •S2O8

2− (6)

Thus, the degradation of antibiotics has been ascribed to 
producing SO4

•− and •OH resulting from the PS or PMS activation 
during sonication.54

Antibiotics pH C0 (mg/L) Time (min) Reaction rate % Removal References
AMX
LFX
AMX
TC
SMX
TC
TC
CIP

2
4
3
3
5
3
2
3

10
25
25
25
50
20
25
50

60
60
75
60
60
75
75
45

0.221
0.172
0.144
0.085
0.074
0.096
0.141
0.116

95.4
76.3
77.9
79.3
84.3
91.2
62.4
99.6

7
8
9
13
16
17
18
19

Table 2: Results of various reported studies on the effect of different parameters.

Antibiotics PS (mM) Frequency 
(kHz)

% Removal PS % Removal 
sono

% Removal 
sono/PS

References

SMX
TC
TC
SFZ
TC
CMH
SMX
TC

2
200
5
4
4.4
4.8
1
2

20
20
35
20
40
20
40
20

4.8
20.1
57.3
4.9
7.5
8.8
11.1
54.3

6.7
4.5
26.9
37.3
2.5
9.7
1.6
8.6

91.3
55.5
88.5
62.4
18.5
45.2
47.2
99.6

21
22
23
24
25
26
27
28

Table 1:  Summary of sonication systems for degrading antibiotics.
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After that, chemical bonds of antibiotics, e.g., S-N, S-C, and N-C 
in SMZ, or N-methyl, hydroxyl, and amino groups in TC, are 
cleaved through oxidation with •OH and SO4

•−.30

The TC sonocatalytic degradation in the Fe3O4/PS system has 
been observed to exhibit an increase in the removal efficiency of 
TC with a rise in PS concentration (20 to 200 mM). Nevertheless, 
the removal efficiency of TC begins to decrease when the PS 
concentration exceeds 200 mM. This is attributed to excessive 
production of sulfate anions by PS instead of active SO4

•−, hence 
diminishing the effectiveness of the process.52 Speculations 
suggest that the formation of SO4

•− could be potentially mitigated 
by excess PS that may act as a scavenger, thereby impeding the 

generation of •OH. It is noteworthy that the supply of 200 mM 
PS is deemed sufficient to facilitate generation.53 The solution 
pH level has a significant impact on several factors, including 
the dissociation of antibiotics, the adsorption of antibiotics onto 
catalysts, and the leaching of metals and their oxides. These 
factors ultimately affect the antibiotic sonocatalytic degradation 
in the presence of PS or PMS.35

Achieving efficient degradation of SDZ (95.7%-98.4%) in the 
sono/PS system is possible at pH values from 3.0 to 7.0. However, 
at pH=10, the system's efficiency was significantly diminished by 
35.7%. In lower pH ranges, Fe0 is more prone to corrosion and 
results in the formation of soluble Fe2+. Conversely, in alkaline 

Figure 1: The SDZ degradation mechanism in sono/Fe0/PS system.

Figure 2: Suggested TC degradation pathway in a sono/S2O8
2− system.
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conditions, the soluble iron ions precipitate and passivate the Fe0 
surface, leading to low production of •OH and SO4

•−.36 Moreover, 
for neutral or alkaline pH, the generated SO4

•− not only undergoes 
a reaction with H2O and OH- but also causes a reduction in 
•OH reactivity.36 In addition, during the antibiotic degradation 
at pH ranges of 3.0-7.0, a gradual diminution in the pH of the 
solution could be detectable, which is attributed to generating 
carboxyl acid products and the decomposing PS. At the end of a 
degradation process, a decrease in pH value from 10 to 6.5.29

The research of Pan et al. has revealed that the sono/
premagnetized-Fe0/PS system experiences a more rapid decrease 
in pH as reaction time increases when compared to other systems. 
This swift decrease in pH facilitates the faster generation of Fe2+ 
and consequently, the more generation of SO4

•−, which results in 
a highly effective degradation of SMZ. Additionally, it also leads 
to remarkable synergistic effects in the mentioned system, further 
aiding in the degradation of SMZ.55

The efficiency of the Sono/PS system for TC degradation is 
strongly influenced by the initial value of pH. The degradation 
rates of TC (in the absence of any buffer) at pH 4, 7, and 10 
were found to be 77.4%, 62.5%, and 88.5%, respectively, after 
120 min.35 At different pH levels, TC (pKa of 3.3, 7.7, and 9.7) 
behaves differently due to its amphoteric nature. At pH = 4, TC 
molecules are mostly neutral or have positive charges while at 
pH=9, they have negative charges. TC molecules with a negative 
charge are highly reactive and can attract species such as •OH, 
due to the increased electric density on the ring system. This leads 
to speeding up in TC degradation. At pH≥10, alkaline-activated 
PS is the main source of SO4

•−, O2
•− and •OH. Moreover, the 

reaction between SO4
•− and OH- under alkaline conditions is an 

effective way to generate •OH.35 Thus, an increase in pH leads to 
improvement in decomposing PS to produce •OH and SO4

•−, as 
described in Equations no. 7-9.55-57

S2O2
−8 + 2H2O HO2

− + 2SO4
2− + 3H+ (7)

HO2
− + S2O2

-8 SO4
•− +SO4

2- + H+ +O2
−• (8)

SO4
•− +OH− SO4

2- + •OH (9)

The effectiveness of Sono/S2O8
2− or Sono/Oxone processes in 

degrading antibiotics was improved significantly due to the rise 
in temperature, which increased the cavitational activity and 
chemical reactions. As depicted in equation no.10, SO4

•− can be 
produced by activating PS through heating.58

S2O8
2− 2SO4

•− (10)

At pH of 4, SO4
•− is the primary agent that leads to the degradation 

of TC, whereas at pH of 7, the degradation of TC is caused by 
both SO4

•− and •OH. Consequently, the degradation rate of TC 
at a pH of 7 is reduced, which is ascribed to the competition 
between SO4

•− and •OH and TC.31

CONCLUSION

After thoroughly reviewing published literature, it has become 
evident that the degradation mechanism and kinetics of antibiotics 
via ultrasound-assisted heterogeneous activation of PS and PMS 
are subject to various factors. These factors include the chemical 
composition of the materials utilized, and physico-chemical 
experimental conditions such as pollutant concentration, PS and 
PMS dosages, and pH levels within the system. It is crucial to 
take into account that most of the research regarding the removal 
of antibiotics in the US is conducted on a small scale. Therefore, 
additional investigations on a larger scale are recommended. 
When using pilot-scale systems, several factors such as energy 
consumption, mass transfer, pH regulation, temperature 
control, and application in actual wastewater samples should be 
considered.
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ABBREVIATIONS
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radical; SO4

•−: Sulfate radical, O2
•−: Superoxide radicals; PDS: 

Peroxydisulfate; AMX: Amoxicillin; LFX: Levofloxacin; TC: 
Tetracycline; SMX: Sulfamethoxazole; CIP: Ciprofloxacin; SFZ: 
Sulfadiazine; CMH: Chloramphenicols.

SUMMARY

One of the advanced oxidation processes employed for the removal 
of refractory pollutants in the aqueous matrix is sonication. 
Antibiotic degradation mechanisms are thoroughly reviewed in 
this article, with a particular focus on activating PS and PMS using 
sonication from 2000 to 2023. The elements that contribute to the 
effective degradation of antibiotics, such as pH, initial antibiotics 
concentration, PMS and PS dosage, contact time, and Ultrasonic 
frequency intensity, were analyzed and reviewed in this review 
study. This method has successfully removed antibiotics from 
aqueous solutions and hospital wastewater.
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