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Rita Rezaee, Reza Akbari1, Milad Nasiri2, Farzaneh Foroughinia3, Nasrin Shokrpour4

Health Human Resources Research Center, Clinical Education Research Center, School of Management and Information Science, Shiraz 
University of Medical Sciences, 1Department of Computer Engineering and Information Technology, Shiraz University of Technology, 

2Clinical Pharmacy Department, Shiraz University of Medical Sciences, 3HIT Department, Faculty of Pharmacy, Shiraz University of Medical 
Sciences, 4English Department, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

Introduction: One of the main causes of medical errors is drug interaction which occurs when a drug 
decreases or increases the effect of another drug. Drug interactions occur as a result of changes in 
pharmacodynamics, pharmacokinetics, or a combination of both. Due to the problems caused by these 
errors and lack of an efficient system of automatic diagnosis of drug interactions, and also since a large 
amount of these interactions can be prevented, we aimed to search for drug interactions in the medical 
texts and also classify and identify the best algorithm.
Methods: A two-stage classification was used to solve the problem of unbalanced data dispersion in drug 
interaction classes. A subset of the most suitable features was identified for classification. In the first step 
of designing a binary classification, pairs of drugs which interact with each other and those which do not 
be separated. Then, we classified the pairs of drug interactions in one of the following four classes: effect, 
advice, mechanism, and int. In this study, different algorithms were used in both types of classifications, 
based on the type of data and expert opinion. To validate the first-stage model, we considered 90% of the 
data as training data and the rest were considered as the test data. To validate the second-stage model, 
we used the difference verification method. Weka data analysis software was also used for designing the 
model; then, the classification was made.
Results: The results showed that the most appropriate features were mutual information (obtaining 
a score of 1000) and parts of speech. The efficiency of J48 algorithm in the stage of separating the 
drugs with and without interaction (F-measure = 0.914) and also in the multiclass stage of the bagging 
algorithm (F-measure = 0.915) was the highest among other algorithms. ZeroR algorithm required the 
shortest time to build the model (less than half a second) in both stages.
Conclusion: According to the results of J48 algorithms and random forest, it can be concluded that decision 
tree is the most appropriate approach in the extraction and automatic classification of drug interactions, 
using the features derived from the text to be applied in clinical decision support system.
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INTRODUCTION

Failure to manage drug interactions is considered a medical 
error. There are several reports that discuss the lack of  
knowledge and awareness about drug interactions as one 
of  the most common errors.[1] In fact, health-care providers 
do not sufficiently know about drug interactions and their 
associated factors.[2]

One of  the main causes of  medical errors is drug 
interactions. The results of  medical error evaluations show 
that about 44–98,000 deaths occur yearly in the United 
States due to errors.[3] Other reports also point to similar 
patterns throughout the world,[4-6] indicating that this 
problem is not specific to the United States. Many of  the 
medical errors related to drugs are predictable. According 
to a study conducted in Australia, 75% of  the medication 
errors are preventable.[7,8] Hospitalized patients are exposed 
to potential drug interactions. Drug interactions are the 
causes of  many referrals to emergency departments.[9] 
Gurwitz et al., in a study on the side effects of  drugs, found 
that 13.3% of  preventable medication errors were related 
to the interactions of  well-known drugs.[10] Nearly 70% of  
the side effects of  medications experienced by residents 
of  the two elderly care homes during a 9-month period 
have been attributed to drug interactions.[11] Various studies 
report the increased likelihood of  hospitalization due to 
complications of  drug interactions.[12] Certainly, there is no 
reliable source of  drug interactions,[13] but there are multiple 
sources that provide information, evaluate and update drug 
interactions data, and label pharmaceutical products.[14] In 
hospitals, this is restricted to financial issues of  medications. 
Moreover, the clinical classifications of  medications are not 
well-implemented due to special attention to financial issues 
and considering medicine as a “service.” On the other hand, 
the existence of  a standard and up-to-date structure that 
incorporates the dynamic knowledge of  pharmaceutical 
information and massive medical literature is essential in 
the field of  drug interactions. Therefore, there is an urgent 
need for a system that would complement human activities 
and automatically perform these tasks. Drug prescription 
systems should include drug interaction control as one 
of  the most basic types of  systems which contribute to 
decision-making.[15] The public’s viewpoints as to hospital 
pharmacy have changed significantly in Iran, due to the 
advancement of  medical services and drug distribution 
and also as a result of  the advent of  concepts such as 
clinical governance. The most important of  these changes 
is the concept of  pharmaceutical care which has caused 
an evolution, in which viewing clinical pharmacology 
as drug distribution is replaced with viewing it as the 
knowledge associated with all drug services including drug 

interactions.[16] The management of  drug-related services 
and drug interactions should be optimized.

In recent years, researchers have made an attempt to 
use computational methods to cope with the challenges 
of  drug interactions. For example, Sun et al. proposed 
a Hadoop-based method to improve the scalability of  
prediction methods for drug combinations. Their study 
showed that using big data techniques was more promising 
for drug combination in comparison with the classic 
prediction methods. In their study, they used support 
vector machine (SVM) and Naïve Bayes under 10-fold 
cross-validation and leave-one-out cross-validation for 
comparison of  the performances.[17]

In another work, Xu et al. used stochastic gradient 
boosting (SGB) algorithm for identification of  drug 
combination in the pharmacology domain. Their study 
aimed to improve the process of  identification of  drug 
combinations. In this study, 352 positive samples were 
used. In addition, 732 biological, phrenological, and 
chemical features were used. The Naïve Bayes, SVM, and 
SGB methods under 10-fold cross-validation were used for 
prediction. The best result was obtained by SGB method.[18]

Bai et al. proposed an improved version of  Naïve Bayes 
for prediction drug combinations. Different features such 
as drug objectives, protein paths, side effects of  drugs, 
and metabolic enzymes. were used. This study showed 
that the improved Naïve Bayes had a better performance 
in comparison with Naïve Bayes, SVM, and K-Nearest 
Neighbor. 10-fold cross-validation and leave-one-out 
cross-validation were also used.[19]

The present study aimed to evaluate the methods of  
drug interaction classification in medical texts, using 
machine-learning algorithms and natural-language 
processing methods. We also investigated the algorithms of  
drug interaction classification, considering different aspects 
(precision, recall, and F-measure and receiver operating 
characteristic [ROC] curve analysis). The results of  this 
study can be useful for clinical decision support systems.

METHODS

Due to the emphasis of  DDI2013 on the use of  both 
pharmaceutical database and MEDLINE for validating the 
results and comparing different studies, 142 MEDLINE 
abstracts and 572 world bank pharmaceuticals were used 
in this study.[20] This set contains 6976 annotated sentences 
with 4 pharmaceutical entities and 5 classes of  drug 
interactions [Table 1].
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First, all pairs of  possible drugs found in the identified 
sentences and pairs of  drugs, specified as the study samples, 
were entered into the ARFF data file. Interaction or lack 
of  interaction was determined by true or false, respectively.

Pairs of  drugs marked with 1 were ranked within the 
positive class, and those marked with 0 were within the 
negative class in terms of  training. In the next stage, 
positive samples were placed in one of  the four classes 
0–3 (advice, effect, mechanism, and int) so that each sample 
contained a pair of  drug entities (drug, group, brand, and 
nonhuman). For instance, a sentence containing four drug 
entities contained six samples, each of  which could be a 
potential drug interaction. Hence, the dataset containing 
6976 sentences included 24,891 samples.

The first step in extracting drug interactions from the texts 
was to identify drug entities. There are three approaches 
in this regard: rule-based, machine learning-based, and 
dictionary-based approaches. In this study, we made an 
attempt to detect and extract drug entities in the text 
by using a machine learning-based approach. Finally, 
to avoid the negative effects of  drug entities extraction 
on final evaluation of  classification algorithms for drug 
interactions, we used the pharmaceutical database of  
drug bank containing target information about 4300 drug 
entities. In this study, to achieve a proposed approach 
to extract and classify drug interactions and identify the 
best algorithm, we classified each pair of  drugs into one 
of  the following five classes: without interaction, effect, 
advice, mechanism, and int, when the text only mentioned 
the existence of  a relationship between the two drugs, 
without making a specific description of  the relationship or 
determining the type of  relationship. The main challenge in 
this regard was the asymmetric distribution of  the classes. 
First, we just put the positive class against the negative 
class; only 19.3% (4037/20854) of  the samples (pairs of  
drugs) were placed in the positive class. Moreover, the 
dispersion among positive classes was also asymmetric and 
only 4.6% (188/4037) of  the samples were of  int class. 
Diagram 1 generally shows the steps involved.

Preprocessing
Before classification and in the preprocessing phase, 
all drug entities in the sentences were listed and 
refined for purification and normalization. The natural 
language processing technique was used in several stages 
including preprocessing and feature extraction stages 
as follows:
• All letters were changed to lowercase
• All drugs were marked as primary or secondary
• All numbers were replaced with letters in string
• Sentences containing <2 drugs were excluded. Stop 

words and punctuations were deleted
• The words were stemmed
• Negations including negative statements and negation 

markings such as “not” were identified.

Parts of  speech were extracted using Stanford’s natural 
language processing tool. The decomposing syntactic tree 
was obtained using Stanford natural language processing 

Table 1: Pairs of drug entities in positive and negative 
superclasses and subclasses
Classes Sources

DrugBank Medline Total

Positive
Advice 819 8 827
Effect 1548 152 1700
Mechanism 1260 62 1322
Int. 178 10 188

Negative
None (noninteracting drug pairs) 19,479 1375 20,854

Total 23,284 1607 24,891

Natural Language
Processing

Sentences detected with      more than two drug entities

parse tree of
sentence structure

Remove stop and
punctuation

Preprocessing

Word stemming

Identification of
Negative Signs

All paires

importance
of words  
Similarity
measures

Role of words

List of verbs
Feature Selection

ARFF File

First stage of classification
Two-classes Algorithms

Positive Paires

Second stage of
classification

Multiclasses Algorithms

Extracting the model of drug interactions

End of
Classification

Diagram 1: General steps for classifying drug interactions
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tool and some of  the parse tree information was 
investigated for potential use as a feature.

Feature selection
To train the algorithms and find a set of  best features 
for classification, we investigated various features such as 
similarity measures, parts of  speech tags, stemmed words, 
mutual information, verb list, and parse tree information. 
Mutual information and parts of  speech were selected as 
the main features.

Applying and evaluating the classes
In this study, the following eight different algorithms were 
used in order to take advantage of  unique benefits of  each 
algorithm.
• Bayes (Naïve Bayes and Multinominal Naïve Bayes)
• Rules (ZeroR, Jrip)
• Functions (LibSVM)
• Trees (J48 and Random Forest)
• Meta (Bagging).

Since the purpose of  the system was to prevent 
prescription of  interfering drugs for patients, the presence 
of  a negative sample in a positive class was better than 
a positive sample in a negative class. Therefore, we 
attempted to minimize the possibility of  a false positive 
existence in this study.

In order to evaluate how the classification algorithm 
functions, the confusion matrix [Table 2] was used, so 
that the concepts of  precision, recall, accuracy, and true 
negative rate were primarily reviewed. Finally, these four 
measures were used for final evaluations: precision, recall, 
F-measure, and ROC analysis.

Recall
This measure was used to calculate the positive drug 
interactions reported by the algorithm, that are really 
positive. TP/P = TP/(TP + FN).

Precision
This measure was used to calculate how much the values 
classified in the sequential classifications of  a class were 
close together, TP/(TP + FP).

F‑Measure
F-measure is the harmonic combination of  precision 
and recall. It is a type of  average and it is used because 
none of  the two measures has a special advantage 
over the other. It is calculated from the following 
equation:

2* 
recall precision
recall precision

×
+

[ ]21

Receiver operating characteristic
The accuracy of  each test and combination of  tests 
are determined using this analysis. The main reason for 
using this analysis is the relative compromise between 
the profits and costs. It also makes it possible to 
graphically display the comparison between the tests, which 
determines the efficiency of  the classification systems; the 
greater the number for a classifier, the more efficient its 
final performance.[22]

Features reduction
Since the ARFF file contains 1447 extracted features 
and a class label feature, CfsSubsetEval-Weka and 
PCA-RapidMiner were used for both classification stages. 
CfsSubset-Eval selected only 38 features for the evaluated 
file in the first stage (positive and negative set) and 35 
features for positive samples. It reduced the time taken to 
build the model and analyze it. However, it did not increase 
the F-measure.

Solving asymmetry problem
To address the problem of  dispersion of  drug interactions 
in asymmetric classes, we investigated different approaches 
such as SMOTE and other resampling algorithms. To 
remove this problem, the SMOTE increased the ARFF file 
samples from 22,268 to 25,728 by injecting samples into 
them. Despite the increase in the file size and time required 
to build the model, system efficiency increased in both 
stages of  drug interaction classification [Tables 3 and 4]. 
Porter stemmer was used for implementation; parse tree 
was used in information preprocessing. Stanford NLP 
Tools, WordNet, and Dragon tools were utilized to identify 
the entities and extract the features. Finally, Weka was 
applied to build the model and train the algorithms. Weka 

Table 3: System efficiency for different algorithms in 
two‑classes stage after applying the Synthetic Minority 
Over‑sampling
Classification algorithms Precision Recall F‑measure Area ROC

Naïve Bayes 0.722 0.649 0.666 0.7
Multinomial Naïve bayes 0.779 0.703 0.718 0.78
ZeroR 0.617 0.731 0.534 0.5
Jrip 0.856 0.859 0.854 0.802
SVM 0.756 0.77 0.74 0.636
J48 0.916 0.916 0.916 0.925
Random forest 0.922 0.922 0.92 0.971

SVM: Support vector machine, ROC: Receiver operating characteristic

Table 2: Confusion matrix of classes
Real classes Predicted classes

1 0
Positive Negative

1. Positive TP FN
0. Negative FP TN

TP: True positive, FP: False positive, FN: False negative, TN: True negative
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input file was provided as a text file in the ARFF format 
by bringing the desired features as columns and listing the 
pharmaceutical samples as rows. In each sample, a value 
was considered for each feature, which formed part of  
the sample vector. The final value of  the sample vector 
actually represents the sample class label. Finally, as shown 
in Figures 1 and 2, the drug interaction classification model 
was extracted.

Final evaluation
In this study, mutual information and parts of  speech were 
selected as the best features extracted from the sentences 
to train the classifiers. According to Tables 5 and 6, given 
that bagging was used as a performance improvement 
algorithm, the best F-measure was obtained in J48 
algorithm for the two-class stage and also in random forest 
for the four-class stage. Therefore, J48 and random forest 
can be considered as the best classification algorithms.

As shown in Tables 5 and 6, J48, random forest, and 
bagging algorithms had the best efficiency in the two-class 
stage, respectively. ZeroR required the shortest time to 
build the model and Jrip required the longest time to do 
so. Tables 7 and 8 reveal that bagging, random forest, and 
J48 algorithms had the best efficiencies in the four-class 
stage, respectively. Moreover, ZeroR and Jrip required 
the shortest and the longest time to build the model, 
respectively.

DISCUSSION AND CONCLUSION

In this study, a system was developed to extract and 
classify the drug interactions from the text. The key feature 
of  using machine learning approach in the unbalanced 
classification of  data was described. That is, implementing 
a two-stage classification (2-class, then 4-class), instead of  
a 5-class classification, had optimal applicability due to 
the unbalanced classes. A two-stage classification of  drug 

interactions had advantages over one-stage classification. 
In addition to classifying the negative class rapidly, it 
also created a true negative rate between positive classes. 
Therefore, by turning this into a two-class problem, we 
can take advantage of  binary classification techniques and 
allow the classifier to classify the samples into positive and 

Table 5: Final system efficiency for different algorithms in 
two‑classes stage
Classification algorithms Precision Recall F‑measure ROC area

Naïve Bayes 0.827 0.591 0.642 0.74
Multinomial Naïve bayes 0.832 0.717 0.751 0.774
ZeroR 0.697 0.835 0.76 0.50
Jrip 0.859 0.872 0.86 0.698
SVM 0.697 0.835 0.76 0.50
J48 0.914 0.917 0.914 0.905
Random forest 0.916 0.916 0.908 0.948
Bagging 0.905 0.91 0.904 0.951

SVM: Support vector machine, ROC: Receiver operating characteristic

Table 6: Final system efficiency for different algorithms in 
multi‑classes stage
Classification algorithms Precision Recall F‑measure ROC area

Naïve Bayes 0.816 0.81 0.809 0.926
Multinomial Naïve bayes 0.896 0.895 0.894 0.972
ZeroR 0.162 0.402 0.231 0.499
Jrip 0.901 0.901 0.901 0.949
SVM 0.768 0.713 0.7 0.765
J48 0.917 0.914 0.914 0.95
Random forest 0.915 0.915 0.915 0.982
Bagging 0.924 0.922 0.922 0.986

SVM: Support vector machine, ROC: Receiver operating characteristic

Table 4: System efficiency for different algorithms in 
multiclasses stage after application of the Synthetic Minority 
Over‑sampling
Classification algorithms Precision Recall F‑measure Area ROC

Naïve Bayes 0.782 0.778 0.778 0.895
Multinomial Naïve bayes 0.897 0.895 0.895 0.972
ZeroR 0.141 0.376 0.205 0.5
Jrip 0.919 0.917 0.917 0.96
SVM 0.779 0.718 0.71 0.777
J48 0.917 0.917 0.917 0.959
Random forest 0.935 0.934 0.933 0.988

SVM: Support vector machine, ROC: Receiver operating characteristic
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negative classes according to its specific characteristics 
and avoid inclination toward the majority class. The use 
of  a two-stage classifier also allows us to analyze different 
classifications to achieve the best results at each stage so 
that the two-stage classification, on the one hand, and 
multi-class classification, on the other hand, would yield 
the best results separately.

Our research shows that an appropriate classification 
is required for initial extraction of  the features. This 
classification will result in better organization of  a large 
amount of  data. Lack of  preprocessing methods may lead 
to disproportionate outputs and errors at the outputs; 
also, desirable features for classification inputs will not be 
generated.

As revealed in this study, after processing the data, different 
classification algorithms operate differently in terms of  
time and output and the results of  their classification differ. 
Although ZeroR algorithm classified the drug interactions 
extraction model in a shorter time, taking other evaluation 
measures into consideration, we can say that the fastest 
algorithm does not always provide the best results.

In this study, different types of  algorithms based on Bayes 
theory, rules, functions, and decision-making tree were 
contrasted in terms of  better performance in classifications 
of  drug interactions.

Bayes theory‑based algorithms
At the beginning of  the study, we expected a great deal about 
these types of  algorithms due to the fact that they work 
based on statistics; however, according to F-measure (0.642), 
after the first stage of  classification (separating pairs 
of  interfering drugs from those without interaction), it 
was found that statistical algorithms failed to meet our 
expectations. This confirms the discussion that drug 
interactions are empirical and that this experimental 
science should be implemented through machine-learning 
methods.

Rule‑based algorithms
According to the results of  F-measure of  the ZeroR 
algorithm (0.231), it was found that this algorithm had the 
worst performance in the second stage (four-class stage). 
However, given the results of  the JRip algorithm and also 
considering the fact, that rule-based algorithms had the 
shortest modeling time, it can be concluded that these 
algorithms did not work that badly.

Function‑based algorithms
Although Weka itself  gave the initial values to LibSVM 
parameters, and the SVM was sensitive to the parameter 
and right parameters were required, this algorithm failed 
to satisfy the expectation in both stages (two-class and 
four-class classifications).

Table 7: Details of the final implementation of the algorithms in two‑classes stage
Classification 
algorithms

Time taken 
to build 

model (sec)

Correctly 
classified 

instances (%)

Incorrectly 
classified 

instances (%)

Kappa 
statistic

Mean 
absolute 

error

Root mean 
squared 

error

Relative 
absolute 
error (%)

Root relative 
squared 
error (%)

Naïve Bayes 130.29 59.13 40.86 0.198 0.403 0.601 150.05 161.87
Multinomial Naïve 
bayes

0.5 71.71 28.28 0.301 0.296 0.485 110.32 130.55

ZeroR 0 83.47 16.52 0 0.268 0.371 100 100
Jrip 6728.04 87.24 12.75 0.458 0.197 0.326 73.61 87.73
SVM 47.28 83.47 16.52 0 0.165 0.406 61.52 109.40
J48 1443.94 91.62 8.30 0.681 0.100 0.267 37.42 71.91
Random forest 145.02 91.64 8.35 0.640 0.117 0.244 43.55 65.75
Bagging 568.35 91.01 8.98 0.632 0.129 0.250 48.13 67.40

SVM: Support vector machine

Table 8: Details of the final implementation of the algorithms in multi‑classes stage
Classification 
algorithms

Time taken 
to build 

model (sec)

Correctly 
classified 

instances (%)

Incorrectly 
classified 

instances (%)

Kappa 
statistic

Mean 
absolute 

error

Root mean 
squared 

error

Relative 
absolute 
error (%)

Root relative 
squared 
error (%)

Naïve Bayes 3.57 81.01 18.98 0.718 0.098 0.292 29.13 71.14
Multinomial Naïve 
bayes

0.09 89.45 10.54 0.843 0.062 0.209 18.42 51.04

ZeroR 0 40.20 59.79 0 0.337 0.410 100 100
Jrip 166.8 90.05 9.94 0.853 0.072 0.209 21.56 51.07
SVM 3.4 71.27 28.72 0.550 0.143 0.379 42.53 92.24
J48 30.97 91.35 8.64 0.872 0.058 0.200 17.17 48.68
Random forest 4.45 91.47 8.52 0.873 0.098 0.194 29.13 47.38
Bagging 58.06 92.19 7.80 0.884 0.070 0.172 20.99 41.98

SVM: Support vector machine
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Tree‑based algorithms
The results showed that this kind of  algorithms had the 
best performance, probably because the features used 
were extracted from the sentence and tree structure, which 
we saw in tree decomposition sentences was maintained 
in the process of  data preprocessing. This group of  
algorithms had the best performance.

Meta (bagging) algorithm
In the first stage (two-class classification), bagging was in 
the third place with 0.1 difference with the best algorithm. 
In the second stage (four-class classification), however, 
bagging was in the first place with 0.08 difference between 
it and the third algorithm. This confirms the good 
performance of  tree algorithms. However, given that 
this algorithm had the best results based on Roc analysis 
(in both two-class and multi-class classifications), it can 
be concluded that bagging has well met the expectations 
about a performance improvement algorithm.

Since the best algorithms are of  the same group in both 
two-class and four-class stages (regardless of  bagging 
algorithm), it can be concluded that the division of  the 
five-class drug interaction classifications into a two-class 
and a four-class classifications is a good approach with a 
certain degree of  uniformity.

According to the results, J48 and random forest are the 
most suitable algorithms for differentiation between 
negative and positive drug interactions and have a good 
performance in classification of  positive drug interactions 
in the effect, advice, mechanism, and int. classes of  bagging 
and random forest algorithms. We can, therefore, say that 
the best algorithms for classifying the interactions extracted 
from the medical and pharmacy texts are within the group 
of  decision tree algorithms.

Table 9 displays the efficiency of  the bagging classification 
algorithm based on various classes of  drug interactions; 
although int. class had the minimum sample size in the 
training dataset, it had the highest F-measure (0.93). Since 
recall (mechanism) shows the classification sensitivity of  
drugs with mechanism interaction relative to the total 
samples with mechanism interaction, it can be concluded 
that all samples related to this class are classified in the 

right class (100%). In addition, given its lowest F-measure, 
it can be concluded that there are also false classifications 
in this class.
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