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Developing micro-/nanoparticulate drug delivery 
systems using “design of experiments”

INTRODUCTION

The concept of drug delivery has undergone a paradigm shift 
today from the erstwhile concept of “right medicine” to that of 
“right medicine” at the “right (target) site” at the “right time.” 
Therapeutic treatment now, thus, aims at better efficacy through 
the delivery of drugs in a sustained and site-specific manner. With 
these technological inventions of the controlled and targeted drug 
delivery, the traditional tablet and liquid oral formulations have 
been metamorphosed into the novel drug delivery systems (DDS), 
including micro/nanoparticulate DDS (MiNaDDS). Several 
types of MiNaDDS, including microcapsules, microspheres, 
nanoparticles (polymeric as well as lipidic), vesicular systems, 

and self-emulsifying systems have been employed extensively 
owing to their paramount advantages over the unit dosage forms. 

These advantages comprise the reduced risk of systemic toxicity 
and local irritation, predictable gastric emptying rate, less variable 
absorption profiles, high bioavailability with minimum plasma 
fluctuations of drugs, controlled and targeted drug delivery, and 
reduced side effects.

The development of an effective MiNaDDS, however, 
invariably involves rational blending of a plethora of polymers 
and excipients. Optimizing the formulation composition and 
the manufacturing process of such a drug delivery product 
to furnish the desired quality traits is, therefore, a Herculean 
task. The traditional approach of optimizing a formulation or 
process essentially entails studying the influence of one variable 
at time (OVAT), while keeping others as constant. Using this 
OVAT approach, the solution of a specific problematic property 
can be achieved somehow, but attainment of the true optimum 
composition or process is never guaranteed. [1] This may be 
ascribed to the presence of interactions, i.e., the influence of one 
or more factors on others. The final product may be satisfactory 
but mostly suboptimal, as a better formulation might still exist for 
the studied conditions. Thus, the conventional OVAT approach 
of drug formulation development suffers from several pitfalls, like 
being strenuous, uneconomical, and inept to reveal interactions. 
Further, the OVAT methodology results only in “just satisfactory” 
solutions, as a detailed study of all variables is not possible. As one 
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Of late, micro and nanoparticluate drug delivery systems have been gaining immense importance primarily attributed to 
their improved drug release controlling and targeting efficiencies. Also, the small particle size and desirable surface charge 
associated with these delivery systems render them suitable for specific applications like lymphatic uptake, pulmonary 
uptake, tumor targeting, brain targeting, etc. For decades, micro and nanoparticulate systems have been prepared by 
the conventional “trial and error” approach of changing One Variable at a Time (OVAT). Using this methodology, the 
solution of a specific problematic formulation characteristic can certainly be achieved, but attainment of the true optimal 
composition is never guaranteed. Thus, the present manuscript provides an updated account of the systematic approach 
“Design of Experiments (DoE)” as applicable to formulation development of microparticles and nanostructured systems. 
Besides providing a bird’s eye view of the various experimental designs and optimization techniques employed for DoE 
optimization of such systems, the present manuscript also presents a copilation of the major micro/nano-structuctred 
systems optimized through DoE till date. In a nutshell, the article will act both as a ready reckoner of DoE optimization 
of micro/nano drug delivery systems and a catalyst in providing an impetus to young pharmaceutical “nano & micro” 
researchers to venture into the rewarding field of systematic DoE optimization.
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cannot establish “cause-and-effect” relationships using OVAT, 
it becomes futile when all variables are changed simultaneously. 
Also, the technique is highly time-consuming as it leads to 
unnecessary runs and batches.

Several drug product inconsistencies tend to prevail generally 
due to inadequate knowledge of the causal factor and response 
relationship during the OVAT approach. Of late, the systematic 
optimization approaches are being widely practiced to alleviate 
such inconsistencies.[2,3] This holistic approach encompassing 
the application of apt experimental designs coupled with the 
generation of mathematical equations and graphic outcomes, 
and depicting a complete picture of variation of the response(s) 
as a function of the factor(s) is termed as design of experiments 
(DoE). DoE techniques are thus far more beneficial, as they 
overcome most shortcomings inherent to the traditional OVAT 
approach. Prominent among all, DoE techniques yield the “best 
solution” in the presence of competing objectives and require 
fewer experiments to achieve an optimum formulation. It leads 
to a comprehensive understanding of the formulation system 
and can trace and rectify a “problem” in a remarkably easier 
manner. Further, the screening techniques employed as a part 
of DoE help in finding the “important” and “unimportant” 
input variables. One can simulate the product or process 
behavior using model equation(s) and thus save a significant 
amount of resources, namely, time, effort, materials, and 
cost. The remarkable feature of DoE is that it can predict the 
performance of formulations even without preparing them, 
and detect and estimate the possible interactions and synergies 
among variables.

Of late, DoE optimization techniques are becoming a regular 
practice globally, not only in the design and development of 
an assortment of new dosage forms, but also for modifying the 
existing ones. Be it a drug industry, institutional drug delivery 
resource, or federal compliance with USFDA, ICH, NIH, or 
ISO, DoE is being frequently sought after in drug discovery 
and development. The faster emerging area of quality by design 
(QbD) also requires the implementation of DoE precepts during 
different stages of product/process transformation.

BASIC TERMINOLOGY

The word optimize simply means to make as perfect, effective, or 
functional as possible. The term optimized has been used in the 
past to suggest that a product has been improved to accomplish 
the objectives of a development scientist. With respect to drug 
formulations or pharmaceutical processes, optimization is a 
phenomenon of finding “the best” possible composition or 
operating conditions. Accordingly, optimization has been defined 
as the implementation of systematic approaches to achieve 
the best combination of product and/or process characteristics 
under a given set of conditions. Of the numerous technical 
terms employed during DoE optimization, the vital ones are 
summarized in Box 1.

METHODOLOGY

The conduct of an experiment and the subsequent interpretation 
of its experimental outcome are the twin essential features of 
the general scientific methodology.[4] This can be accomplished 
only if the experiments are carried out in a systematic way and 
the inferences are drawn accordingly. The theme of the DoE 
optimization methodology provides thought-through and 
thorough information on diverse DoE aspects organized in a 
seven-step sequence as described in Figure 1.

The optimization study begins with Step I, where an endeavor 
is made to ascertain the initial drug delivery objective(s) in an 
explicit manner. Various main response parameters, which closely 
and pragmatically epitomize the objective(s), are chosen for 
the purpose. In Step II, the experimenter has several potential 
independent product and/or process variables to choose from. 
By executing a set of suitable screening techniques and designs, 
the formulator selects the vital few influential factors among 
the possible “so many” input variables. Before going to the 
more detailed study, experimental studies are undertaken to 
define the broad range of factor levels as well. During Step III, 
an apposite experimental design is worked out on the basis of 
the study objective(s), and the number and the type of factors, 
factor levels, and responses being explored. Working details 
on variegated vistas of the experimental designs, customarily 
required to implement the DoE optimization of drug delivery, 
have been elucidated in the subsequent section. Afterward, 
the response surface methodology (RSM) is characteristically 
employed to relate a response variable to the levels of input 
variables, and a design matrix is generated to guide the drug 
delivery scientist to choose optimal formulations. In Step IV, 
the drug delivery formulations are experimentally prepared 
according to the approved experimental design, and the chosen 
responses are evaluated. Later in Step V, a suitable mathematical 
model for the objective(s) under exploration is proposed, the 
experimental data thus obtained are analyzed accordingly, and the 
statistical significance of the proposed model discerned. Optimal 
formulation compositions are searched within the experimental 
domain, employing graphical or numerical techniques. This 
entire exercise is invariably executed with the help of pertinent 
computer software. Step VI is the penultimate phase of the 
optimization exercise, involving the validation of the response 
prognostic ability of the model put forward. The drug delivery 
performance of some studies, taken as the checkpoints, is assessed 
vis-à-vis that is predicted using RSM, and the results are critically 
compared. Finally, during Step VII, which is carried out in the 
industrial milieu, the process is scaled up and set forth ultimately 
for the production cycle.

EXPERIMENTAL DESIGNS

An experimental design constitutes the pith of the entire DoE 
exercise. Before the selection of an experimental design, it is 
essential to demarcate the experimental domain (i.e., the area 
to be investigated) within the factor space (i.e., the broad range 
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Figure 1: Seven-step ladder for optimizing drug delivery systems 
(figure adopted from ref.[1])

levels and their number are selected so that the optimum lies 
within its realm. While selecting the levels, one must see that 
the increments between them should be realistic. Too wide 
increments may miss finding the useful information between 
the levels, while a too narrow range may not yield accurate 
results.

There are numerous types of experimental designs to choose 
from. Various commonly employed experimental designs 
for RSM, screening, and factor influence studies during 
the pharmaceutical product/process development of micro/
nanoparticulate systems include
 (a) Factorial designs
 (b) Fractional factorial designs
 (c) Plackett–Burman designs
 (d) Optimal designs
 (e) Central composite designs
 (f) Box–Behnken designs
 (g) Taguchi designs
 (h) Equiradial designs
 (i) Mixture designs

Box 1: Key terms used in DoE optimization
Vital terms and their explanation
• Independent variables: The input variables which are directly under the control of the product development scientist
• Factor: Experimentally controlled independent variable affecting the performance of a product or process
• Categorical factor: Qualitative input factor, e.g., type of polymer, tablet machine, etc.
• Signal factor: Controllable input variables influencing a response
• Nuisance factors: Uncontrollable factors which complicate the estimation of effects and interactions
• Robust: A product or process which is less variable to external uncontrollable influences
• Quantitative factor: Input variable with a continuous numeric value
• Levels: Values assigned to a factor
• Constraints: Restrictions imposed on levels of a factor
• Response: Measured system property to estimate an experimental outcome
• Effect: Magnitude of the change in response by varying factor level(s)
• Main effect: Factor effects averaged at all other factor levels
• Interaction: Lack of additivity of factor effects
• Orthogonality: Sole dependence on main factor(s) and independence from interactions
• Confounding: Aliasing, equaling, or lack of orthogonality or independence of variables
•  Experimental design: A statistical strategy for organizing the experiments in such a manner that the required information is obtained as 

efficiently and precisely as possible
• Randomization: An unbiased way of treatment allocation to experimental units
• Replication: Number of units employed for each treatment
• Error control: Grouping of a specific type of experiments to increase experimental precision
• Runs: Experiments conducted according to the selected experimental design
• Design matrix: The layout of experimental runs in a matrix form
• Design augmentation: Enhancement, extension, and reuse of a primitive experimental design to a more advanced one
• Design resolution: The measurement of degree of confounding in an experimental design
•  Response surface plot: A 3D graphical representation of a response plotted between two independent variables and one response 

variable
•  Contour plot: Geometric illustration of a response obtained by plotting one independent variable against another, holding the 

magnitude of the response and other variables as constant
• Contour lines: Curves drawn on a contour plot corresponding to a response value
• Factor space: Dimensional space defined by the coded variables
• Experimental domain: Part of the factor space, investigated experimentally for optimization
•  Response surface designs: Designs facilitating response surfaces by allowing the estimation of the main effect, interaction and even 

quadratic effects
• Screening designs: Experimental designs employed for the purpose of factor screening
• Empirical model: Mathematical model describing the factor–response relation using polynomials
•  Rotatable design: Experimental design where the prediction ability of a response is constant in all directions at a given distance from 

the center point of the domain
•  Residual: Quantitative difference between the observed value of a variable and the value predicted using the proposed model
• Outlier: An unusually different response value as compared to the predicted values

of factor studies). To accomplish this task, first a pragmatic 
range of an experimental domain is embarked upon and the 
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Table 1: Various experimental designs employed during drug delivery optimization
Design Description Diagrammatic representation 
Factorial 
designs (FD)

A factorial experiment is one in which all levels 
(x) of a given factor (k) are combined with all 
levels of every other factor in the experiment 
and the total number of experiments are xk

(a) 22 FD; (b) 23 FD
Fractional 
factorial 
designs (FFD)

In cases where there are large numbers 
of factors, it is possible that the highest 
order interactions have no significant effect. 
Number of experiments can be reduced in 
a systematic way with the resulting design 
called as FFD. An FFD is a finite fraction (1/xr) 
of a complete or full FD, where r is the degree 
of fractionation and xk-r is the total number of 
experiments required

 
(a) 23-1 FFD with design points as spheres; (b) 23-1 FFD with an 
added center point

Plackett–
Burman 
designs (PBD)

PBDs are special two-level FFDs used generally for screening of K – i.e., N-1 factors, where N is a multiple of 4. Also 
known as Hadamard designs, the designs can easily be constructed employing minimum number of trials

Central 
composite 
designs (CCD) 
or Box-Wilson 
design

For nonlinear responses requiring second-
order models, CCDs are most frequently 
employed. The “composite design” contains 
an imbedded (2 k) FD or (2 k-r) FFD, augmented 
with a group of star points (2 k) and a “central” 
point. The total number of factor combinations 
in a CCD is given by 2 k + 2 k + 1.

(a) CCD (rectangular domain) with α = 1; (b) CCD (spherical 
domain) with α = 1.414

Box–Behnken 
designs (BBD)

A specially made design, the BBD, requires 
only three levels for each factor, i.e., -l, 0, 
and +1. A BBD is an economical alternative 
to CCD

BBD for three factors
Equiradial 
designs (ErD)

Equiradial designs are first-degree response 
surface designs, consisting of N points on a 
circle around the center of interest in the form 
of a regular polygon 

Two-factor ErD: (a) triangular four-run design; (b) square five-run 
design; (c) hexagonal Doehlert design

(Continued)
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Table 1: (Continued)
Design Description Diagrammatic representation 
Simplex 
mixture designs 
(SMD)

In DDS with multiple excipients, the 
characteristics of the finished product usually 
depend not so much on the quantity of each 
substance present but on their proportions. 
Mixture designs are highly recommended in 
such cases 

MSD: (a) linear model; (b) quadratic model
Taguchi 
designs (TD)

Offline quality control design, as it ensures 
good performance in the development of 
robust products or processes with “I” referring 
to the inner array and “E” as the outer array

An inner 23 and outer 22 array TD
Optimal 
designs

When the domain is irregular in shape, optimal designs can be used. These are the nonclassic custom designs 
generated by exchange algorithm using a computer

The salient features of above-mentioned designs are briefly stated 
in Table 1.

Selection of the experimental design 
The choice of a design among the various types of available 
options depends upon the amount of resources available and 
the degree of control over making wrong decisions (i.e., Type I 
and Type II errors for testing hypotheses) that the experimenter 
desires. It is a good idea to choose a design that requires somewhat 
fewer runs than the budget permits, so that the center point runs 
can be added to check for curvature in a two-level screening 
design and backup resources are available to redo runs that have 
processing mishaps. By and large, low-resolution designs like 
FDs (full or fractional), PBDs, or Taguchi designs suffice the 
purpose of simpler screening of a large number of experimental 
parameters. Screening designs support only the linear responses. 
Thus, if a nonlinear response is detected, or a more accurate 
picture of the response surface is required, a more complex design 
type is necessary. Hence, when the investigator is interested in 
estimating interaction and even quadratic effects, or intends 
to have an idea of the local shape of the response surface, the 
response surface designs, capable of detecting curvatures, are 
used. The compilation in Table 2 acts as a help guide while 
selecting an experimental design, based upon the desired motive 
of the study.

Search for the optimum 
Optimization of one response or the simultaneous optimization 
of multiple responses can be accomplished either graphically or 
numerically.

Graphical optimization 
Known popularly as response surface analysis, graphical 
optimization displays the area of feasible response values in the 
factor space. One or more of the following techniques may be 
employed for this purpose.

FD = fractional design; FFD = fractional factorial design; 
PBD = Plackett–Burman design; CCD = central composite 
design; BBD = Box–Benkhen design; SMD = simplex mixture 
design; TGD = Taguchi design; D-OD = D-optimal design; 
EQD = equiradial design.

Location of the stationary point  
After completing the experimental work, often the goal of the 
formulation scientist is to locate the optimum. Figure 2a and 
b shows the location of the stationary points in the case of a 
maximum and minimum, respectively. The case in which the 
stationary point is not a maximum or minimum is known as the 
saddle point, as shown in Figure 2c.

When the number of factors investigated is large, i.e., more than 
two, use of a graphical procedure cannot be interpreted with 
dexterity.

Search methods  
Search brute force methods are employed for choosing the upper 
and lower limits of the responses of interest. The response surfaces 
in these search methods, as defined by the appropriate equations, 
are searched to find the combination of independent variables 
yielding the optimum. Two major steps are used – feasibility 
search and grid search. The feasibility search method is used to 
locate a set of response constraints that are just at the limit of 
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Table 2: Application of important experimental designs depending upon the nature of factor, 
models, and strategies
Design →
Trait ↓

2 k FD xk FD FFD PBD CCD BBD SMD TGD D-OD EQD

Factor type
Formulation
Process
Both

ü
ü
ü

ü
ü
ü

ü
ü
ü

ü
ü
ü

ü
ü
ü

ü
ü
ü

ü
–
–

ü
ü
ü

ü
ü
ü

ü
ü
ü

Number of factors
≤3
4–6
>6

ü
ü

ü
ü

ü
ü
ü

ü
ü

ü
ü

ü
ü

ü ü
ü
ü

ü
ü

ü
ü

Factor level
2
≥3

ü
–

–
ü

ü ü
–

–
ü

–
ü

ü
ü

ü
ü

ü
ü

ü

Model proposed
Linear model
Interaction model
Quadratic model
Mixture model
 Custom-made 
model

ü
ü
–
–
–

ü
ü
ü
–
–

ü
ü
–
–

ü
ü
–
–
–

ü
ü
–
–

ü
ü
–
–

–
ü
–
ü
–

ü
ü
–
–

ü ü
ü
–
–

Screening and factor 
influence study

ü ü ü ü – – ü ü ü –

Response surface 
mapping

ü ü ü ü ü ü ü ü

Figure 2: Diagrammatic representation of contour lines for the location 
of the stationary point, S. (a) Maximum; (b) minimum; (c) saddle point

possibility. Subsequently, the exhaustive grid search is applied, 
wherein the experimental range is further divided into a grid of 
specific size and searched methodically.

Overlay plots 
The response surfaces or contour plots are superimposed over 
each other to search for the best compromise visually, as depicted 
in Figure 3. Minimum and maximum boundaries are set for 
acceptable objective values. The region is highlighted wherein 
all the responses are acceptable. Within this area, an optimum is 
located, trading off different responses. An overlay plot can also 
be termed as a combined contour plot.

Mathematical optimization methods (numerical 
optimization) 
Graphical analysis is usually preferred in the case of a single 
response. However, in cases of multiple responses, it is usually 
advisable to conduct numerical or mathematical optimization 
first to uncover a feasible region.

Desirability function involves a way of overcoming the difficulty 
of multiple, sometimes opposing, responses. Objective function 
methods are used to seek an optimum formulation by solving for 
a maximum or a minimum in the presence of equality and/or 
inequality constraints. The Lagrangian method can be used for 
the optimization of functions expressed by introducing a slack 
variable for each inequality constraint.

Model diagnostic plots 
The goodness of fit of a model can be investigated using one or 
more of the plots illustrated in Figure 4:

•	 Actual	versus	predicted: A graph is plotted between the actual 

and the predicted response values.[5-7] This helps in detecting 
a value or a group of values that are not easily predicted by 
the model.

Figure 3: A contour overlay plot
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Figure 4: Model diagnostic plots to investigate the goodness of the fit of the proposed model(s). (a) Predicted versus actual; (b) studentized 
residuals versus predicted; (c) studentized residuals versus run; (d) normal probability plots; (e) outlier T plot; (f) Cook’s distance plot; (g) leverage 
plot; (h) Box–Cox plot (figure adopted from ref.[1])

•	 Residuals	 versus	 predicted: Residual (or error) is the 
quantitative difference between the obser ved and 
the predicted response(s). Studentized residuals are the 
residuals converted to their standard deviation units.

•	 Residuals	versus	run:	This	is	a	plot	of	the	residuals	versus	
the order of the experimental runs. It checks for the “lurking 

variables” that may have influenced the response during the 
experiment.

•	 Residuals	versus	factor:	This	is	a	plot	of	the	residuals	versus	
any selected factor. It checks whether the variance, not 
accounted for by the model, is different for different levels 
of a factor.
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•	 Normal	 probability	 plot:	 It investigates the normal 
probability distribution of residuals, as judged from the 
linear trend of the points, when plotted on a probit scale.

•	 Outlier	T:	This	 is	 a	measure	 of	 by	how	many	 standard	
deviations the actual value deviates from the value predicted 
after deleting the point in question.

•	 Cook’s	distance: This provides measures of the influence, 
potential or actual, of the individual runs.[8]

•	 Leverage:	This	is	a	measure	of	the	degree	of	influence	of	
each point on the model fit.

•	 Box–Cox	plot	 for	 power	 transforms:	The	Box–Cox	plot	
is a tool to help determine the most appropriate power 
transformation for the application to response data.[9]

Computer use in optimization 
The merits of DoE optimization techniques are galore and 
their acceptability upbeat. Putting such rational approaches into 
practice, however, usually involves a great deal of mathematical 
and statistical intricacies. Today, with the availability of powerful 
and economical hardware and that of the comprehensive DoE 
software, the erstwhile computational hiccups have been greatly 
simplified and streamlined. Computer software have been used 
almost at every step during the entire optimization cycle ranging 
from the selection of design, screening of factors, use of response 
surface designs, generation of the design matrix, plotting of 3D 
response surfaces and 2D contour plots, application of optimum 
search methods, interpretation of the results, to finally, the 
validation of the methodology. Hence, when selecting a DoE 
software package, it is important to look for not only a statistical 
engine that is fast and accurate, but also the following:
•	 A	simple	graphic	user	interface	(GUI)	that	is	intuitive	and	

easy-to-use
•	 A	well-written	working	manual	with	tutorials	to	get	off	to	a	

quick start
•	 A	wide	selection	of	designs	 for	screening	and	optimizing	

processes or product formulations
•	 A	 spreadsheet	 flexible	 enough	 for	 data	 entry	 as	well	 as	

dealing with missing data and changed factor levels
•	 Graphic	tools	displaying	the	rotatable	3D	response	surfaces,	

2D contour plots, interaction plots, and the plots revealing 
model diagnostics

•	 Facility	to	randomize	the	order	of	experimental	runs
•	 Design	 evaluation	 tools	 that	 will	 reveal	 aliases	 (i.e.,	

confounded or equal effects) and other potential pitfalls
•	 After-sales	 technical	 support,	 online	 help,	 and	 training	

offered by manufacturing vendors.

Box 2 lists some commonly used computer software packages for 
DoE optimization, especially in pharmacircles, along with their 
respective web sources.

Drug delivery optimization: A literature instance
DoE has successfully been employed to optimize wide-ranging 
objectives in pharmaceutical sciences including preformulation 
studies, stability kinetic studies, organoleptic evaluation of a drug 

or its formulation, drug–excipient interactions, performance 
evaluation procedures of the formulation or process, procedures, 
procedures for assaying the drug content, or validation of the 
methods.[10]

Also, experimental designs have long been employed to optimize 
various industrial products and/or processes like, FDs since 
1926, the screening designs since 1946,[11] CCDs since 1951,[12] 
and SMDs since 1958.[13] The use of optimization techniques 
using DoE, however, permeated into the field of pharmaceutical 
product/process development around four decades ago.[10]

The first literature report on the rational use of optimization 
appeared in 1967, when a tablet of sodium salicylate was 
optimized using an FD.[14] Since then, these systematic 
approaches have been put into practice in the development of 
drug formulations at a steady pace. Among the conventional 
dosage forms, tablets have predominantly been investigated 
for the purpose, whereas, among various DDS, CR matrices 
have majorly been studied, followed by microparticulates and 
nanoparticulates. An updated account of DoE optimization 
studies on MiNaDDS is provided herein. 

Microparticulate systems 
Microparticulate systems offer numerous advantages not 
only to pharmaceutical sciences but all biomedical sciences. 
Microencapsulation helps to separate a core material from its 
environment until it is released, thereby improving its stability, 
extending the core’s shelf-life, and providing a sustained and 
controlled release. Owing to these salient advantages, the 
literature abounds in reports regarding the formulation of 
microparticles, microcapsules, and microspheres. Table 3 provides 
a selected instance of various microparticulate systems optimized 
using DoE.

Nanoparticulate/nanostructured systems 
Pharmaceutical nanotechnology has witnessed a recent upsurge 
due to several advantages of nanoparticles over other drug 
delivery systems. Their size allows them to be administered 

Box 2: Important computer software packages 
for DoE optimization
Design Expert
www.statease.com

JMP
www.jmp.com

DOE PRO XL and DOE KISS
www.sigmazone.com

ECHIP
www.echip.com

STATISTICA
www.statoftinc.com

OPTIMA
www.optimasostware.co.uk

Omega
www.winomega.com

iSIGHT
www.engenious.com

SOLVER
www.solver.com

GRG2
www.fp.mcs.anl.gov

MINITAB
www.minitab.com

SPSS
www.spss.com

MATREX
www.rsd-associates.com/
matrex.htm 

COMPACT
www.fp.mcs.anl.gov 
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Table 3: DoE optimization of microparticulate systems
Microspheres
Drug Factors/polymers Design Year
Aspirin Amount of calcium alginate ANN 2010[15]

Prednisolone acetate Molecular weight of polymer, polymer conc., theoretical drug loading FD 2010[16]

Riboflavin sodium phosphate Amount of calcium alginate RSM 2009[17]

Rosiglitazone maleate Polymer-to-drug ratio, conc. of the polymer, stirring speed FD 2009[15]

Seratiopeptidase Polymer conc., external aqueous phase volume FD 2009[18]

Lacidipine Polymer conc., volume of glutaraldehyde, stirring speed, cross-linking time CCD 2009[19]

Verapamil HCl External phase pH, polymer conc., initial drug load ANN 2009[20]

Insulin Conc. of cross-linking agent, stirring speed, polymer concentration BBD 2009[21]

Theophylline Temperature, drug loading, amount of solvent BBD 2008[22]

Heparin Polymer conc., inlet temperature, liquid feed low rate FD 2008[23]

Amoxicillin Drug-to-polymer ratio, stirring speed FD 2008[24]

Flurbiprofen % w/v polyvinyl alcohol, aqueous phase conc., PHBV conc. in aqueous 
phase 

CCD 2008[25]

5-fluorouracil Polymer conc., ratio of the drug to the polymer, amount of the cross-linking 
agent, stirring speed

OD 2008[26]

Amoxicillin Polymer-to-drug ratio and stirring speed FD 2007[24]

Fluorescein isothiocynate Poly(epsilon-caprolactone) FD 2006[27]

Glipizide Polymer-to-drug ratio and stirring speed FD 2005[28]

Cyclosporine Polymer and surfactant amounts, and organic solvent volume, stirring speed CCD 2002[29]

Microparticles
Benznidazole Encapsulation efficiency, size, yield, and dissolution rate ANN 2009[30]

Etoposide Ratio of drug and polymer, and drug and surfactant FD 2010[31]

Paclitaxel Conc. of Brij, amount of TPGS (α-tocopheryl polyethylene glycol-1000 
succinate

Taguchi 2009[32]

Alpha tocopherol Ratio of pectin to alpha-tocopherol, emulsifier concentration, CaCl2 conc. CCD 2009[33]

Glutathione Volume of liquid paraffin, the HP-beta-CD amount, and the drug/polymer 
ratio

Multilevel 
experimental 
design

2007[34]

Bovine serum albumin (BSA) Polyvinyl pyrrolidone (PVP) conc., BSA/PCL ratio, w/o/o/o ratio, and PEG/
PCL ratio

FD 2001[35]

Table 4: DoE optimization of nanoparticulate systems
Polymeric nanoparticles
Drug Factors/polymers Design Year
Paclitaxel Amount of polymer, duration of ultrasonication RCCD 2010[36]

Gentamycin Molecular weight of PLLA Orthogonal design 2009[37]

Tanshinone – CCD 2007[38]

Thymopentin – CCD 2006[39]

Amphiphilic beta-cyclodextrin Water fraction, acetone fraction, and ethanol fraction Mixture design 2005[40]

Insulin Ratio of polymers (PCL/RS ratio), volume, and pH of the 
aqueous solution of polyvinyl alcohol

CCD 2005[41]

5-fluorouracil Type of surfactant, amount of acetone, and molecular 
weight of the polymer

Orthogonal design 2005[42]

Solid lipid nanoparticles
Quercetin Amount of Compritol and Tween 80 CCD 2010[43]

Vitamin K1 Concentrations of the surfactants, Myverol, and Pluronic CCD
RSM

2010[44]

Amikacin Particle size, drug loading, and zeta potential, amount of lipid 
phase, ratio of the drug to lipid, and volume of aqueous phase

CCD 2010[45]

Simvastatin Amount of glycerol monostearate, concentration of 
poloxamer, and volume of isopropyl alcohol

FD 2010[46]

Buspirone-HCl Surfactant percentage, speed of the homogenizer, acetone-
to-DCM ratio, lipid type

BBD 2009[47]

Allopurinol Drug-to-wax ratio FD 2005[48]
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Table 6: DoE optimization of liposomal systems
Drug Factors/polymers Design Year
Sinomenine Proportion of phospholipid and cholesterol Mixture design 2009[63]

Ciprofloxacin Molar concentration of ciprofloxacin and cholesterol FD 2009[64]

Benzocaine Surfactant concentration, volume of hydration phase, vesicle lipid phase, percentage 
of ethanol

D-OD 2008[65]

Lidocaine 
hydrochloride

Conc. of the CH coating solution, the dripping rate of this solution on the liposome 
colloidal dispersion, stirring rate and the amount of the drug entrapped

FFD 2007[66]

Glipizide Amount of paraffin wax, proportion of stearic acid in the wax FD 2007[67]

Piroxicam 
proniosome 

Molar ratio of Span 60 to cholesterol, surfactant loading, and the amount of the drug BBD 2007[68]

Leuprolide Volume of the aqueous phase, HSPC/DSPG (negative charge) and HSPC/cholesterol ANN
FD

2005[69]

Protamine–DNA 
complex

Weight ratio of protamine/DNA, the weight ratio of Chems/DNA, and the molar ratio of 
Chems/DOPE in the anionic liposomes

CCD 2004[70]

Gadolinium Phospholipid type and amount of cholesterol), liposome size, drug/lipid ratio (loading), 
and nature of the amphiphilic gadolinium (Gd) chelate

FFD 2002[71]

Table 5: DoE optimization of self-emulsifying systems
Drug Factors/polymers Design Year
Patchoulic alcohol Ratio of Cremophor EL, Tween 80, PEG 400, isopropyl myristate, 

patchoulic alcohol
CCD 2010[49]

Carvedilol Amount of SPH and 0.1 N HCl used during drug loading FD 2010[50]

Lacidipine Amount of oil phase, surfactant, and co-surfactant D-OD 2010[51]

GBE50 Amount of IPM and Cremophore Orthogonal design 2009[52]

Genistein Amount of maisine, labrafac, Cremophore, labrasol, and transcutol BBD 2009[53]

Curcumin Conc. of surfactant, co-surfactant, and oil SLD 2009[54]

Oridonin Oil percentage, and surfactant-to-co-surfactant ratio CCD 2009[55]

Probucol Amount of surfactant and co-surfactant BBD 2008[56]

Antischistosomal drug 
-QHN17

Oil content, weight ratio of surfactant and co-surfactant CCD 2007[57]

Simvastatin – Mixture design 2007[58]

Cyclosporine Amounts of Emulphor El-620, Capmul MCM-C8, and 20% (w/w) 
CyA in sweet orange oil 

BBD 2007[59]

Ketoprofen Conc. of the co-surfactant and gelling agent FD 2004[60]

Celecoxib – MD 2004[61]

Coenzyme Q10 (CoQ) Amount of R-(+)-limonene, surfactant, and co-surfactant BBD 2004[62]

intravenously via injection unlike other colloidal systems which 
occlude both needles and capillaries. Due to their small size, they can 
pass through the sinusoidal spaces in the bone marrow and spleen 
more efficiently as compared to other systems like microspheres. Also, 
due to their large surface area, they have a higher loading capacity. 
Table 4 provides a selected instance of various polymeric and lipidic 
nanoparticulate systems optimized using DoE.

Self-emulsifying systems 
Self-emulsifying drug delivery systems (SEDDS) possess 
unparalleled potential in improving the oral bioavailability of 
poorly water-soluble drugs. Following their oral administration, 
these systems rapidly disperse in gastrointestinal fluids, yielding 
micro- or nanoemulsions containing the solubilized drug. Owing 
to its miniscule globule size, the micro/nanoemulsified drug 
can easily be absorbed through lymphatic pathways, bypassing 
the hepatic first-pass effect. Table 5 provides an account of self-
emulsifying systems optimized using DoE.

Liposomes  
Liposomes are artificially prepared vesicles made of a lipid 
bilayer. Liposomes can be filled with drugs, and used to deliver 
drugs for cancer and other diseases. Liposomes can be prepared 
by disrupting biological membranes, for example by sonication. 
Liposomes can be composed of naturally derived phospholipids 
with mixed lipid chains (such as egg phosphatidylethanolamine) 
or other surfactants. Table 6 provides an account of liposomal 
systems optimized using DoE.

Microemulsions 
Microemulsions are clear, stable, isotropic liquid mixtures of 
oil, water, and surfactant, frequently in combination with a 
co-surfactant. The aqueous phase may contain salt(s) and/
or other ingredients, and the “oil” may actually be a complex 
mixture of different hydrocarbons and olefins. In contrast to 
ordinary emulsions, microemulsions form upon simple mixing 
of the components and do not require the high-shear conditions 
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generally used in the formation of ordinary emulsions. The two 
basic types of microemulsions are direct (oil dispersed in water, 
o/w) and reversed (water dispersed in oil, w/o).

In ternary systems such as microemulsions, where two 
immiscible phases (water and oil) are present with a surfactant, 
the surfactant molecules may form a monolayer at the interface 
between the oil and water, with the hydrophobic tails of the 
surfactant molecules dissolved in the oil phase and the hydrophilic 
head groups in the aqueous phase. As in the binary systems 
(water/surfactant or oil/surfactant), self-assembled structures 
of different types can be formed, ranging, for example, from 
(inverted) spherical and cylindrical micelles to lamellar phases 
and bicontinuous microemulsions, which may coexist with 
predominantly oil or aqueous phases. Table 7 provides an account 
of microemulsions optimized using DoE.

EPILOG

The pioneering approach of DoE has become an integral and 
cardinal phenomenon globally in drug delivery, especially in 
the industrial milieu. DoE optimization can make modifying 
the existing formulations and meeting the redefined objectives 
much simpler. The industrial payoffs of the approach are 
exceptional, as it offers product development solutions with fairly 
small involvement of men, materials, machination, and money. 
A pharmaceutical scientist should earnestly consider the use of 
DoE studies particularly when finding the correct compromise 
is not simple and straightforward. Accordingly, it has been found 
to be particularly valid for nanostructured and microparticulate 
systems.

The more the formulator knows about the system, the better he or 
she can define it, and the higher precision he can monitor it with. 
Hence, one must envision the entire DoE exercise as a whole. 
The hiccups in optimizing a pharmaceutical formulation are 
due to the difficulties in understanding the real cause-and-effect 
relationships. Defining the relationship between the formulation 
or process variables and quality traits of the formulation is almost 
an impossible task without the application of experimental 
designs. Trial and error OVAT methods, in this regard, can never 
allow the formulator to know the proximity of any particular 
formulation to optimal drug delivery solution.

Notwithstanding the outstanding benefits of DoE optimization, 
the experimenter should certainly not consider it as a magic 

wand to solve all product development problems, as there is no 
surrogate to the pharmaceutical wisdom, art, or rationale. A wise 
scientist can even choose the influential variables through his vast 
experience and observation, bypassing the rigors of screening 
and factor influence studies. If incorrect choice of experimental 
designs during DoE optimization can jeopardize the reliability 
of prediction, an inept choice of experimental domain may either 
miss the optimum or require much more number of experiments 
to find the same.

The merits of DoE are numerous and benefits galore. Still 
there are several experimenters in the developing nations who 
have not yet endeavored in DoE. A significant jump in DoE 
information and its impact on production capability have not 
yet been obtained. It is the most opportune time for them to get 
started first. A journey of hundred miles starts with a single leap. 
Eventually, the day would not be quite far when the enormous 
utilities of DoE could be harvested by drug industry and research 
to their fullest advantage.
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