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INTRODUCTION

Antibiotics are administered to prevent (prophylaxis) or treat 
infections.1 Antibiotics are generally categorized into six groups 
namely fluoroquinolones (FQs), macrolides, tetracyclines, 
aminoglycosides, cephalosporins, and penicillins.2 FQs are 
broad-spectrum class of bactericidal antibiotics, which are 
used to prevent or treat infections without affecting the host 
cells.3 As per the mode of action, FQs inhibit the synthesis of 
essential enzymes involved in DNA replication.4 FQs can only 
be partially metabolized within human and animal bodies, and 
are frequently found in urban discharges and at wastewater 
treatment plants.5 FQs are recognized among other emerging 
environmental contaminants with great public health concern 
due to the ecotoxicological effects and potential to increase 
microbial resistance.6 Among several FQs, CFX is the most 
often used fluoroquinolone antibiotic.4,5 CFX has been found in 

agricultural soils (119.8 µg kg-1),7 freshwater (6.5 mg L-1),8 manure  
(45.59 mg kg-1),9 and urban sewage sludge (426 mg kg-1).10  
According to Mathew and Unnikrishnan (2012), CFX 
concentrations in effluents of wastewater treatment plants 
of pharmaceutical companies in India have reached up to 31  
mg/L-1.10 Regardless of the reality that these chemicals can be 
found in low doses makes them difficult to investigate, their 
persistence in drinking water for an extended length of time may 
have considerable negative impacts on human and environmental 
health.9 Regardless of the fact that these materials are present in 
low amounts, it is hard to evaluate them, their presence in drinking 
water for an extended length of time may have considerable 
negative impacts on human health and the environment.10

CFX can being easily found in wastewater, surface water and 
groundwater.11 This fact represents a huge concern about the 
potential adverse effects that it may cause to the environment 
and public health.12 Given this scenario, it is necessary to 
develop methodologies for CFX removal from aquatic systems, 
since the conventional processes usually used in water and 
wastewater treatment plants are insufficient to completely 
remove emerging contaminants.13 Thus alternative strategies 
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have to be employed, such as the membrane separation process,14 
adsorption,15 electrocoagulation16 and photocatalysis.17 Among 
the various advanced oxidation processes, the use of ultrasonic 
and photocatalytic processes as wastewater treatment has become 
more widely used. The most important advantage of these 
processes is the lack of material transfer and performance in all 
environmental conditions. In addition, the low cost of commercial 
catalysts, non-toxicity, availability, and the establishment of a 
stable photochemical process are other advantages.18

In photocatalytic decomposition, contaminants are decomposed 
under UV radiation and in the presence of metal oxide particles 
such as TiO2 and ZnO, etc. The mechanism of this process is 
ultraviolet radiation to the semiconductor material, followed by 
electron excitation from the capacitance band to the conduction 
band. Electron excitation causes the production of hydroxyl 
radicals in aqueous media, which is effective in decomposing 
antibiotics.19

Semiconductor phenocatalysts of metal oxide nanoparticles 
as catalysts in recent years due to the lack of environmental 
problems have attracted the attention of many scientists and also 
nanoparticles have a high surface area. MgO, due to its destructive 
absorption properties, is a promising material as an adsorbent 
and due to its nanoscale and high specific surface area, it can 
be an ideal adsorbent for degradation of toxic chemical agents. 
The particle has advantages such as non-toxicity, high thermal 
stability, environmental friendliness and low cost.20-22 The aim 
of this study was to investigate the combined efficiency of the 
photosonocatalytic process using CFX as an advanced oxidation 
process to decompose and remove the antibiotic CFX from the 
aqueous medium.

MATERIALS AND METHODS

Required chemicals include CFX antibiotic with 98% purity 
from Sigma Aldrich, MgO with average size of 20 nm and 
density of 3.58 g/cm3 by Sigma Aldrich, HCL and NaOH from 
Merck were used. All solutions used in this process are prepared 
by adding a certain antibiotic concentration to distilled water. 
Also used devices and instruments include DR 5000 UV-vis 
spectrophotometer, UV radiation reactor, SONIC 3MX ultrasonic 
bath, 8, 15 and 30 watt UV lamp, AZ 86505 digital pH meter, 
digital scale KERNAEJ laboratory, 42 Whatman paper filter. 

CFX removal experiments

This experimental-laboratory study was performed in a batch 
reactor on different concentrations of a synthetic solution 
containing the CFX antibiotic. All prototypes of CFX antibiotic 
solution in this study were prepared synthetically. In this study, 
due to the nature of the CFX, which has different properties at 
different pHs, the effect of the pH variable in the acidic, neutral 
and alkaline ranges (3, 5, 7, 9 and 11) was investigated. Also, the 
effect of important variables of ultrasonic radiation frequency  

(35 and 130 kHz), concentration of MgO nanoparticles (0.1, 0.3, 
0.5, 0.7, 0.9, 1 mg / l), CFX concentration (10, 25, 50, 100, 150, 
200 mg/L), UV radiation time and ultrasonic waves (15, 30, 45, 
60, 75, 90, 120 min) and UV radiation power (8, 15, 30 W) on the 
removal of CFX.

In this study, UV radiation reactors and ultrasonic bath reactors 
have been used in series. The prepared synthetic solution is placed 
in a 250 cc Erlenmeyer flask inside a UV reactor. The reactor is made 
of a chamber with a wall covered with glossy aluminum sheets to 
reflect UV and increase radiation efficiency. In order to uniform 
the solution of the samples during irradiation, we have installed 
the reactor beam on the KS500 shaker device. The distance of UV 
lamp from the samples is 15 cm. The effluent of the UV reactor 
is transferred to the ultrasonic bath to continue the process. All 
experiments were performed at laboratory temperature (23°C). 
The concentration of CFX output of each reactor was measured 
by spectrophotometry using a spectrophotometer model DR 
5000 UV-Vis made in USA at a wavelength of 276 nm.

RESULTS

Examination of the results of Figure 1. shows that increasing the 
pH from 3 to 7 leads to enhancing the CFX removal efficiency from 
55.2 to 78.6%. However, as shown in the Figure, with increasing 
the pH from 7 to 11, the removal efficiency is declined with a 
steeper slope. Based on the Figure, optimal pH was obtained to be 
equal to 7 with a CFX removal efficiency of 78.6%.

The results of the effect of nanoparticle dose showed that by 
increasing the amount of MgO nanoparticles from 0.1 to 0.3 g/L 
(Figure 2), we see an increase in CFX removal efficiency from 
58 to 80%. Nonetheless, as shown in the Figure, by increasing 
the nanoparticle dose from 0.3 to 1 mg/L, antibiotic removal 
efficiency had a declining trend. The study of the Figure shows 
that the optimal amount of MgO with a CFX removal efficiency 
of 80.4% is 0.3 g/L.

Figure 1: Effect of pH on CFX removal efficiency (C0 = 50 mg/L, UV=15 W, 
time=90 min, Dose=0.3 g/L, frequency= 35 KH).
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The general results showed that by increasing the concentration 
of CFX from 10 to 150 mg/L, the removal efficiency increases 
significantly (Figure 3), and by increasing the concentration to 
values more than the identified optimal amount, the antibiotic 
removal decreases. At this stage, the effect of the photocatalytic 
process on the CFX removal was far greater than the sonocatalytic 
process.

The results of this study in Figure 4 showed that with increasing 
the time of UV irradiation, the CFX removal efficiency develops 
significantly.

With increasing irradiation intensity in Figure 5, the removal 
efficiency enhances significantly. The highest efficiency was 
detected during the use of a lamp with an intensity of 30 watts, 
and the lowest efficiency was observed when a lamp with an 
intensity of 8 watts was employed.

DISCUSSION

The effect of pH change on the CFX molecule has shown that at 
pH values less than 6.1, the surface charge of the CFX becomes 
cationic and positive due to the protonation of amine groups. 
At pH values above 7.8, the CFX molecule is converted to the 
anionic form due to the loss of protons from the carboxylic 
group in the antibiotic structure. In the pH range of 6.1 to 7.8, 
the loss of protons of the carboxyl group leads to the production 
of negatively charged carboxylates, however, the amine group is 
protonated and the charge remains positive. Therefore, in this 
pH range, most of the CFX molecule in an aqueous solution is 
uncharged, in other words, it has a positive end and a negative 
end.23,24

The CFX is affected by pH in the environment, which molecular 
form of the CFX is also different according to the pH. In acidic 
pH values less than 5.5, CFX is in the protonated form, and 
therefore the predominant form is cations. In relatively neutral 

Figure 2: Effect of dose on CFX removal efficiency (C0 = 50 mg/L, UV=15 W, 
time=90 min, pH=7, frequency= 35 KH).

Figure 3: Effect of concentration on CFX removal efficiency (dose = 0.3 g/L, 
UV=15 W, time=90 min, pH=7, frequency= 35 KH).

Figure 4: Effect of time on CFX removal efficiency (dose = 0.3 g/L, UV=15 W, 
C0 = 150 mg/L, pH=7, frequency= 35 KH).

Figure 5: Effect of irradiation intensity on CFX removal efficiency  
(dose = 0.3 g/L, C0 = 150 mg/L, pH=7, frequency= 35 KH).
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combination with the sonophotocatalytic process can effectively 
remove CFX from aqueous solutions. However, the photocatalytic 
process, like that of the sonocatalytic process, performed well in 
removing the antibiotic.
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