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INTRODUCTION
Parkinson’s Disease (PD) is the second most common age-related 
neurodegenerative disease characterized by tremor, rigidity, slowness of 
movement, postural imbalance, and other non-motor symptoms such as 
cognitive impairment, depression, anxiety, sleep disorders, and apathy to 
name a few.1 PD is one of the most common neurodegenerative diseases, 
caused by degeneration of dopaminergic neurons in the substantia nigra 
pars compacta thereby lowering the amount of dopamine available for 
neurotransmission in the corpus striatum. Subsequently, there is an 
accumulation of Lewy bodies in the dopaminergic neurons, further 
contributing to the disease.2 Age, environmental factors, genetics, and 
oxidative stress could be the cause of PD. 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) mouse model has been the most used 
model for explicating damage to the nigrostriatal pathway in PD.3 The 
chief treatment options available now are drug therapy that includes 
the widely used levodopa (a dopamine precursor), dopamine receptor 
agonists, Catechol-O-Methyltransferase (COMT) inhibitors, and 
Monoamine Oxidase (MAO) inhibitors.4 Although the drugs were 
effective but long-term usage contributed to other side effects in older 
patients which include dizziness, confusion, hallucinations, psychosis, 
and agitation.5 Postural hypotension and somnolence were other adverse 
effects reported with the use of levodopa.6

Studies have demonstrated that neuropathology of PD, such as 
Lewy bodies is present in the central vestibular system.7 According 
to electrophysiological and neuro tracker investigations, vestibular 
information is transferred to the striatum, which in PD lacks 

dopaminergic input.8 Some early studies of vestibular function in PD 
suggested deficits in the vestibulo-ocular (VORs) and vestibulospinal 
reflexes.7 The vestibular system, controls posture and balance and is tightly 
linked to the body’s entire physiology.9 The vestibular system controls 
reflexes cognition and coordination and is therefore referred to as “The 
Sixth Sense”.10 In recent years’ stimulation of the vestibular system has 
been in use for diagnosing neurological disorders,11 treating dementia, 
relieving depression and anxiety,12 regulating neurotransmitters 
associated with ageing.13 Deep brain stimulation (DBS) emerged as a 
new and effective treatment for the motor symptoms and dyskinesias of 
PD.14 Galvanic vestibular stimulation helped in alleviating some of the 
motor symptoms of PD,15 but many patients have reported discomfort 
during the procedure.7 
In the present study Caloric, Vestibular Stimulation (CVS) is used 
to stimulate the vestibular apparatus. It is a simple and non-invasive 
procedure that is shown to improve the motor and non-motor symptoms 
of PD in pre-clinical experiments.16 The primary goal is to determine the 
impact of bilateral CVS on behavioural outcomes in PD-induced Swiss 
albino mice.

MATERIALS AND METHODS
Chemicals
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was purchased 
from Sigma Aldrich, USA for the present study.
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ABSTRACT
Background: Parkinson’s disease (PD) is one of the most common 
degenerative disorders of the ageing brain. Currently, there is no cure for 
PD and most of the available treatments only aim to reverse the dopamine 
deficiency and relieve its symptoms. Caloric vestibular stimulation (CVS) is 
believed to help in relieving motor symptoms of PD. Hence, the present 
study is planned to evaluate the effect of CVS on behavioral changes in PD 
Mice. Methods: Twenty-four healthy male Swiss albino mice divided into 
four groups (n=6) were used for the study. PD was induced by giving an 
intraperitoneal injection of MPTP for 5 consecutive days. Bilateral CVS was 
given with hot water (temperature 40°C) for 15 days. Changes in behaviour 
(locomotor activity, grip strength, motor coordination, immobilization time) 
were measured on day 1 and day 15 and the results were statistically 
analysed. Results: The PD group showed a significant decrease in 
locomotor activity, muscular strength (fall on time), grip strength and 

immobilization time when compared to the control group, whereas CVS 
prevented the symptoms of PD when compared with the PD group. 
Conclusion: Caloric vestibular stimulation was effective in alleviating 
behavioral alterations in Parkinson-induced mice.
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coordination, Parkinson’s disease.
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Forced swim test: Immobilization time was assessed by the forced swim 
test. In this test, a tank was prepared housing water at a temperature of 
24°C-30°C. The water level was maintained at a depth to ensure that the 
rodent’s tails and feet did not touch the bottom of the tank. The mice were 
put into the tank one at a time and allowed to swim. The time between 
when the mouse stopped swimming and started sinking was recorded. 
Each mouse was removed immediately as it began to sink, dried and 
put back into cages. The water tank was cleaned as the accumulation of 
faeces and urine could cause bacterial contamination.22

Statistical analysis
Data were expressed in mean ± SEM and analyzed by one-way ANOVA, 
followed by Tukey’s post hoc test using GraphPad Prism software. A 
p-value less than 0.05 was considered significant.

RESULTS
Locomotor activity: The PD group showed a significant decrease in 
locomotor activity when compared with the control group (P <0.001). 
The locomotor activity showed a significant improvement in the PD + 
CVS group when compared with the PD group (P <0.001) and the control 
group (P <0.05). The group that received CVS alone did not show any 
significant changes when compared with the control group and showed 
significant differences in locomotor activity (P <0.001) when compared 
with the PD group (Figure 1).
Grip Strength: The effect of vestibular stimulation on grip strength 
is given in Figure 2. Grip strength was significantly decreased in the 
PD group when compared with the control group (P<0.001). Caloric 
vestibular stimulation significantly improved the grip strength in the 
PD + CVS group when compared with the PD group (P<0.001) and 
the control group (P<0.01). Mice in the CVS alone group showed a 
significant improvement in the grip strength when compared with the 
PD group (P<0.001) but no differences when compared with the control.
Motor coordination assessment: The effect of vestibular stimulation 
on latency to fall (sec) on rotarod performance is given in Figure 3. 
The mean fall-off time of the PD group was significantly decreased 
(P<0.001) when compared with the control group. PD + CVS group 
showed considerable improvement when compared with the PD group 
(P<0.001) and the control group (P<0.05). Fall off time in CVS alone 
group was significantly increased when compared with the PD group 
(P< 0.001) and no difference when compared with the control group.

Animals
A total of 24 healthy male Swiss albino mice weighing 25-30 gm were 
used for the study after obtaining ethical clearance from the AIMST 
University Animal Ethics Committee (AUAEC/FOM/2020/04). 
Animals were individually housed in spacious polyacrylic cages in 
university animal house and maintained at controlled temperature and 
humidity under a 12 h light/dark cycle. Food and water were available 
to the animals’ ad libitum. Animals were allowed to acclimatize to the 
animal house before performing any tests on them. All the experiments, 
interventions and recordings were done between 9 am to 5 pm so that 
the circadian rhythm Is not disturbed and influence the readings.

Experimental Design
Swiss albino mice were randomly divided into four groups of six animals 
each.
Group I: Control group
Group II: PD group
Group III: CVS for 15 days 
Group IV: PD + CVS for 15 days
Group I was considered as a normal control. The animals in group II 
and IV were administered with an intraperitoneal injection of MPTP 
(30mg/kg body weight) in sterile saline, once daily for 5 consecutive 
days to induce dopaminergic neuron death in the substantia nigra/ 
to induce PD.17 The animals in group III and IV were given vestibular 
stimulation for 15 days after confirming the mice developed PD in 
group IV. Behavioural assessment was done at the before and end of the 
experimental procedures.

Caloric Vestibular Stimulation 
The middle ear cavity of mice was irrigated with 42°C water, which 
caused a convection current in the semicircular canal. Approximately 
2.0 mL of water was drawn into the syringe. The mouse was secured in a 
supine position with its head slightly inclined. Warm water was expelled 
from the tube at a rate of 0.1 mL/sec after the head was twisted.13,18 In this 
research, bilateral vestibular stimulation was administered daily between 
9 am and 12 pm for 15 days as mentioned in the experimental design.

Behavioural Assessment
Locomotor activity: The mice’s locomotor activity was studied using the 
actophotometer (Jainsons, India). Mice are placed in the center arena 
and their locomotor activity was noted for 10 mins continuously. The 
movement of the animals interrupts the light coming from the photocell. 
Every time there is an interruption of light it is recorded as a count by 
the digital counter.19,20

Grip Strength: Grip strength was studied using a wire grip test to assess 
muscle strength. A wire was fixed horizontally between two platforms 
Each animal was hung with its paws on the middle of the wire, and the 
duration of time the mice could hold on to the wire before falling was 
recorded. The height above the ground level was kept at a minimum 
to avoid any injuries from falling and additionally cotton and sponge 
were placed on the ground as cushion. Prior training was given to all the 
mice before the actual testing. The fall-off time was recorded in all the 
groups.4,20

Motor coordination assessment: Motor coordination in the mice was 
evaluated using a digital Rota-rod. It is a four-panel techno device with 
a timer. Mice were tested based on their ability to stay on a Rota-rod 
apparatus that was rotating at a speed of 20-25 rpm. All the mice were 
trained before subjecting them to the testing. On the day of the test, each 
mouse had three trials with a rest time of 5 min between each trial. The 
fall of time was recorded for all the trials and the mean of 3 trials was 
considered as the reading.21

Figure 1: Impact of CVS on locomotor activity. Values are expressed as mean 
± SEM (n=6).
X p<0.05, Z p<0.001 when compared with that of the control group; Wp<0.001 
when compared with that of the PD group. (One-way ANOVA followed by 
Tukey’s post-hoc test).



Narayanam, et al.:  Caloric Vestibular Stimulation Alleviates the Motor Dysfunctions in PD mice

International Journal of Pharmaceutical Investigation, Vol 12, Issue 4, Oct-Dec, 2022 481

was observed in the PD + CVS group when compared with the PD and 
control groups. CVS alone group showed a significant increase (P<0.001) 
in immobilization time when compared with the PD group.

DISCUSSION
In this research, CVS improved locomotor activity, muscle strength, 
motor coordination, immobilization time and memory in PD-induced 
mice, indicating its ability to ameliorate motor deficits that were induced 
by PD. The characteristic movement disorders are seen in PD-include 
bradykinesia, rigidity, and resting tremors are all caused due to the loss 
of dopaminergic neurons of substantia nigra pars compacta.23 In the 
present study, the neurotoxin MPTP was injected intraperitoneal for 5 
consecutive days to destroy the dopaminergic neurons. Being a lipophilic 
drug, MPTP can cross the blood-brain barrier. MPTP is metabolized 
to the intermediate 1-methyl-4-phenyl-2,3-dihydropyridinium species 
(MPDP+) in the brain by glial monoamine oxidase-B (MAO-B), which 
is then oxidised to the lethal version MPP+.3 MPP+ is released into the 
extracellular space by astrocytes, where it is taken up by dopaminergic 
neurons. Once MPP+ accumulates in dopaminergic neurons, it largely 
promotes neurotoxicity by blocking complex I of the mitochondrial 
electron transport chain, leading to ATP depletion and oxidative stress 
induced by superoxide and nitric oxide, followed by neuronal death.24-26 
Other types of vestibular stimulation have been shown to improve motor 
function and postural instability in Parkinson’s disease and hypotonic 
cerebral palsy, which in turn improved locomotion.27 By stimulating 
the vestibular nerves through galvanic vestibular stimulation in 
Parkinsonism axial motor capabilities were improved.28 The CVS triggers 
the vestibular afferents nerves which activate the basal ganglia and limbic 
system via the cerebellar vermis. The efferent connection from the basal 
ganglia, reaches the spinal cord through the pedunculopontine nucleus 
to control motor movements.29 Thus, CVS activates the extrapyramidal 
connections to improve motor coordination and activity in PD mice. 
Vestibular stimulation can augment various neurotransmitters, and 
this may also play a key role in enhancing motor activity. In a study by 
Sailesh and Archana vestibular stimulation has limited the changes in 
the dopamine and GABA levels.30 Jinu et al., have shown in their study 
that bilateral caloric vestibular stimulation in the dementia model, 
had the potential in modulating and regulating acetylcholine release, 
balancing glutamate level and acetylcholinesterase inhibition and 
thereby improving motor coordination and anxiety level.31 Another 
possible mechanism could be by increasing the serotonin levels as 
vestibular stimulation has been reported to increase serotonin release 
and thereby delay brain ageing.32 Similar increase in serotonin was 
reported in another study where serotonin was restored to normal post-
CVS administration in MPTP-induced PD.30 Serotonin has a positive 
effect on GABA and glutamate signaling and they are used as potential 
therapeutic agents to improve cognitive decline and various symptoms 
in Alzheimer’s disease.33 
In the present study, PD-induced mice showed a decrease in locomotor 
activity, muscle strength, motor coordination, immobilization time and 
memory all of which are evident from the declined test results as seen 
in the behavioral studies. The intervention of CVS has considerably 
improved the motor symptoms in the mice which can be seen in the 
improved performance of the animals on the actophotometer, rotarod, 
wire grip test, forced swim test and Morri’s water maze. Recent studies are  
also supportive of CVS administration, where CVS has increased dopamine 
levels thereby relieving the motor symptoms in experimental mice.34 

CONCLUSION
In the present study, CVS improved the motor symptoms and inhibited 
the MPTP-induced neuronal damage in the mice. CVS has most 

Figure 2: Impact of CVS on wire grip. Values are expressed as mean ± SEM 
(n=6). Y p<0.01, Z p<0.001 when compared with that of the control group;  
W p<0.001 and when compared with the PD group. (One-way ANOVA 
followed by Tukey’s post-hoc test).

Figure 3: Impact of CVS on fall off time. Values are expressed as mean ± SEM 
(n=6). X p<0.05, Z p<0.001 when compared with that of the control group;  
W p<0.001 when compared with the PD group. (One-way ANOVA followed by 
Tukey’s post-hoc test).

Figure 4: Impact of CVS on immobilization time. Values are expressed as 
mean ± SEM (n=6). Y p<0.01 when compared with that of the control group; 
W p<0.001 when compared with the PD group. (One-way ANOVA followed by 
Tukey’s post-hoc test).

Immobilization time: The effect of vestibular stimulation on 
immobilization time as recorded in the forced swim test is given in 
Figure 4. PD group showed a significant decrease in the immobilization 
time when compared with the control group. No significant change 
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probably increased dopamine levels by shielding the neurons from 
further degeneration and ameliorating the neuropathology caused by 
MPTP. 
No damage or change was noticed in the behaviour of mice in the group 
that only received CVS demonstrating that CVS administration is safe 
and causes no adverse effects. CVS can be used as an adjunct in the 
treatment of motor deficits in the early onset of Parkinson’s disease. The 
molecular mechanism by which CVS confers neuroprotection must be 
further investigated. 

ABBREVIATIONS
CVS: Caloric Vestibular stimulation; COMT: Catechol-O-
Methyltransferase; DBS: Deep Brain Stimulation; GABA: Gamma 
Aminobutyric Acid; MAO: Monoamine Oxidase; MAO-B: Monoamine 
Oxidase-B; MPDP+ : 1- Methyl-4-Phnyl-2,3 Dihydropyridinium; 
MPTP: 1- Methyl-4-Phenyl-1,2,3,6- Tetrahydropyridine; PD: Parkinson 
Disease; VORs: Vestibulo- Ocular reflexes.
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