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Review Article

INTRODUCTION
Breast cancer is the most common cancer and a leading cause of cancer-
associated death in women.1 Approximately 1.7 million people are 
diagnosed with breast cancer, and it accounts for 450,000 estimated 
deaths worldwide per annum.2 Despite many treatment options and 
targeted therapies, the mortality rate remains high. Breast cancer cells 
metastasize commonly to lymph nodes, liver, lungs, and bone.3 Some 
common breast cancer biomarkers are progesterone, estrogen, and 
Human Epidermal Growth Factor Receptor-2 (HER2).4 Their expression 
pattern plays a crucial role in breast cancer etiology and is also an 
important genetic marker and target for the therapy.5 The treatment 
strategies highly depend on the tumor’s receptor status and stage.3 
Traditional therapies include chemotherapy, radiotherapy, surgery, and 
adjuvant endocrine therapy and have a partial impact on the patient’s 
survival rate.6-7

Nanotechnology is a rapidly developing field bringing promising 
strategies for diagnosing and treating cancer.7 The application of 
nanomaterials in cancer diagnosis and treatment is known as nano-
oncology.8 Several nanomaterials or nanocarriers are used to precisely 
deliver the chemotherapeutic drugs to minimize the toxicity to healthy 
cells.9 Nanoparticles or nanomaterials have incredible potential in 
cancer therapeutics due to their size, shape, and surface chemistry. 
The nanoparticles used for drug delivery in breast cancer treatment are 
shown in Figure 1.
Food and drug administration (FDA) have approved the nanotechnology-
based drug doxil®, which is a novel PEGylated liposomal (poly-ethylene 
glycol coated) doxorubicin formulation for the treatment of breast and 
ovarian cancers.7 Other drugs approved by the FDA for breast cancer are 
Myocet (Liposome encapsulated-doxorubicin), LEP-ETU, EndoTAG-1, 
Lipoplatin, Genexal-PM, Nektar -102.10 Nanoparticle loaded with 
chemotherapeutic drugs has the advantage of efficient target site 

delivery and could potentially circumvent the drug resistance in cancer 
cells.11  This review discusses nanoparticles-based systems used in the 
diagnosis and treatment of breast cancer. Further, it also highlights the 
biomarkers used to diagnose breast cancer and reviews their limitations 
and challenges in clinical applications.

CONVENTIONAL METHODS OF BREAST 
CANCER TREATMENT AND THEIR LIMITATIONS
The standard methods to diagnose breast cancer include clinical 
examination, imaging, and pathological assessment. The clinical 
or physical examination techniques involve family medical history, 
menopausal status, blood count, liver and kidney function analysis, and 
manual palpation. The pathological assessment includes collecting and 
staining biomarkers in tissue biopsy obtained from patients, whereas 
the imaging technique involves breast ultrasound and mammography.12 
The prognosis and treatment depend on the tumor’s size, location, 
immunohistochemistry (IHC), and histology studies.13 Women with 
BRCA1 and BRAC2 mutations have an increased risk for breast cancer, 
and their management includes prophylactic bilateral total mastectomy 
and reconstruction to reduce the risk. The HER2-positive patients are 
treated with trastuzumab combined with other chemotherapeutic 
agents.14-15

However, these treatment strategies have limitations of lack of specificity 
and significant toxicity to the normal cells. Further, solid tumors form a 
barrier in transcapillary transport, leading to low penetration of drugs 
and, consequently, biodistribution.15 Previous studies have shown 
that the drug accumulates 10 to 20 times higher in normal cells than 
the cancer cells proving that many anti-tumor drugs cannot cross  
40 mm thick tissues. Subsequently, this leads to multi-drug resistance 
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Polymeric Nanoparticles
Polymeric nanoparticles like PLGA (Poly D L-lactic-co-glycolic acid), 
PEG (Polyethylene glycol), and PLA (Poly D L-Lactic acid) are made from 
biodegradable and biocompatible polymers.27 Polysaccharides like pectin, 
chitosan, and alginate have encapsulated these nanostructures.28-29 These 
polymeric nanoparticles are articulated to encapsulate drugs with either 
hydrophobic or hydrophilic properties. It helps in surface alterations and 
pH-reliant controlled drug release. Dendrimers are the macromolecules 
of polymeric nanomaterials with many arms extending from a midpoint 
with a distinct topological arrangement.30 These consist of three essential 
components – (1) a central core having two or other groups, which are 
called generations; (2) the peripheral functional groups on the surface 
which regulate the physicochemical possessions of a dendrimer; and 
(3) peripheral clusters, which can be modified to attain a vital lipophilic 
and hydrophilic function.31 Genexol®-PM, Paclitaxel-formulated with 
polymeric micelle, is under clinical trial for treating breast cancer 
(Clinical Trials Database). Paclitaxel is an antimitotic chemotherapeutic 
drug that hinders the depolymerization of the microtubule, cell motility, 
and transport and is the first line of treatment for breast, lung, and ovary 
cancer.32 However, its limitation includes low specificity to cancer cells, 
poor solubility, and poor permeability.33 

Inorganic Nanoparticles
The inorganic nanoparticles have emerged as a novel drug delivery 
system due to their unique properties, such as chemical alignment, 
surface dimensions, physiochemical possessions, affluence of 
functionalization, virtuous constancy, and more excellent surface-to-
volume ratio. Some inorganic nanoparticles are carbon nanotubes, 
magnetic, quantum dots, gold, and silica.20 Gold nanoparticles are more 
attractive as nanocarriers because of their unique characteristics. They 
can be effortlessly synthesized, and their size can be actively controlled by 
tuning the synthesis.34 The gold particles are resistant to oxidation within 
physiological conditions and thus are ideal for biological applications. 
The size and shape of the gold nanoparticles can be regulated to penetrate 
the cell membrane efficiently. These functionalized nanoparticles 
show increased transport kinetics, biocompatibility, circulation, and 
adsorption by tumor cells. An example of inorganic nanoparticles is 
Quantum dots (QD). These are semiconductor inorganic luminous 
nanocarriers whose surface can be modified with several ligands or 
molecules for the targeted therapy. These biocompatible nanocrystals 
range from 1-20 nm in size.35-36

in the cancer cells.16 Nanocarriers are potentially used for imaging and 
treatment applications in cancers to overcome these problems and for 
the drug’s site-specific delivery.

NANOPARTICLES FOR DIAGNOSIS AND DRUG 
DELIVERY IN BREAST CANCER 
Nanoparticles exhibit unique physical, chemical, and mechanical 
properties and are utilized as delivery agents by encapsulating and 
attaching drugs. They have optimum and regulated in-vivo distribution, 
specificity, intracellular penetration, bioavailability, and low toxicity. The 
nanoparticles are classified into three types (1) Lipid, (2) Polymeric, and 
(3) Inorganic. Depending on their size, colloidal state, and reasonable 
movement time, they have diverse applications in imaging, drug 
delivery, ablation of photothermic tumors, and radiation sensitizers.17-19 
Figure 2 represents the characteristics of nanoparticles used in breast 
cancer therapy.

Liposomes
Bangham et al. identified Liposomes,20 the first nanocarrier to be 
clinically approved by the FDA to deliver chemotherapeutic drugs, such 
as DaunoXomeTM.21  Liposomes  are phospholipids consisting of small 
vesicles made of a vital aqueous and a lipid bilayer with membranes.20 
Bilayer membrane and hydrophobic molecules are intercalated, whereas 
hydrophilic molecules are entrapped in the aqueous medium, making 
it an excellent drug transporter (Torchilin, 2005). It is coated with inert 
polymers like Polyethylene glycol, which improves its stability and thus 
prolongs circulation in the blood.22 The first FDA-approved liposomes-
based nanomedicines were Doxil®, which comprises PEGylated-
doxorubicin.23 Although there are numerous advantages of liposomes, 
some studies have reported high absorption by the reticuloendothelial 
system and Kupfer cells of the liver within 15-30 min after intravenous 
injections,24-25 batch-to-batch variation, stability, and sterilization 
limitations.26 

Figure 1: Different types of nanocarriers based drug delivery system.

Figure 2: Properties of nanoparticles for used in the breast cancer therapy.
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a better treatment response for anti-estrogen or aromatase therapy than  
ER-negative patients.81

It is also an important prognostic factor for predicting breast cancer 
recurrence. It plays a vital role in the progression of carcinogenesis, and 
ER-positive tumors account for 70% of the primary breast cancer cases. 
It has been reported that ER-positive tumors are less aggressive and are 
associated with better outcomes after surgery.82

Progesterone Receptor
The progesterone receptors are ligand-induced transcriptional factors 
that activate pro-proliferative signaling pathways in breast cancers. Only 
a few reported tumors are positive for progesterone receptor (PR) and 
negative for estrogen receptor (ER). Studies have shown that PR-positive 
tumors comprise 65-75% of breast cancers. Endocrine inhibition therapy 
is more effective and more responsive in the progesterone receptor and 
estrogen receptor-positive (PR+ER+) patients as compared to only 
estrogen receptor-positive patients (ER+PR-).83 Further, the patients 
who are PR upbeat show better responses to Tamoxifen. PR-negative 
and ER-positive tumors are more aggressive and are associated with 
Tamoxifen resistance.84

PROLIFERATIVE MARKERS
Ki-67 Biomarker
Ki-67 is the proliferation marker present in all actively dividing cells. It is 
a nuclear non-histone protein, the expression of which varies throughout 
the cell cycle.85 It is considered one of the important markers in breast 
cancer and has been used to predict the outcome of hormonal adjuvant 
therapy and the risk of recurrence after chemotherapy.86-87 Several studies 
have suggested Ki-67 as a predictive and prognostic biomarker in breast 
cancer patients treated with neoadjuvant chemotherapy.88-89  It has been 
noted that Ki-67 should be used in combination with ER, PR, and HER2 
to classify breast cancer better.

Cyclin D1 Biomarker
Cyclin D1 is a promising prognostic and diagnostic biomarker in breast 
cancer. The cyclin D1 (CCND1) gene is amplified in about 15% of the 
estrogen receptor-positive breast cancers and overexpression of its protein 
in 50% of cancer patients. Tumors with high expression of CCND1 
are found to show resistance to endocrine therapy.90 The expression of 
cyclins D, E, and A is crucial for the cell cycle transition (G1, S, and 
G2/M phase).91 The cell cycle proteins and their associated proteins, 
cyclin-dependent kinases, govern the division of the cells.92 However, as 
there have been conflicting reports of the correlation between cyclin D1 
levels and patient survival, further studies are required to elucidate the 
clinical value of cyclin D1 in breast cancer.

Cyclin E
Cyclin E has similar actions as Cyclin D1, i.e., it is involved in regulating 
the cell cycle.93 The overexpression of the Cyclin E gene has been identified 
in several breast cancer cell lines, and it has been proven that it plays a 
significant role in tumorigenesis.94-96 It regulates the G1-S checkpoint 
and has been shown as a potent oncogene driving unregulated cellular 
proliferation (Table 1).97-98

Molecular Profiling of Biomarkers with Quantum Dots
The subtyping of breast cancer into different subtypes is based on 
immunohistochemistry (IHC) markers and gene expression array data. 
As these methods are semi-quantitative and variable, new molecular 
profiling technologies were developed.99 The individual tumor can be 
analyzed for a panel of biomarkers for precision medicine or personalized 
treatment with advanced profiling techniques. Numerous studies have 

ADVANCEMENTS OF CARBON 
NANOMATERIALS FOR TREATING BREAST 
CANCER
One of the nanomaterials with greater importance is carbon 
nanomaterials.37 Carbon nanomaterials are inorganic nanomaterials 
and have excellent thermal and mechanical properties. They are used 
in photothermal therapy due to their strong ability to absorb in the 
infrared range.38 The carbon nanomaterials such as graphene, carbon 
nanotubes (CNTs), and fullerenes, when chemically functionalized, 
exhibit enhanced solubility, thus enabling a controlled drug delivery.39-41 
The delivery of chemotherapeutic agents like taxol and doxorubicin 
using these carbon nanomaterials reduces toxicity as they have enhanced 
transmembrane permeability.42-49 These nanomaterials are an excellent 
matrix for imaging agents like radionuclides and fluorescent tags for early-
stage detection of breast cancer.50-54  Buckyball or Buckminsterfullerene 
is a carbon allotrope that can absorb light in the ultraviolet region and 
generate reactive oxygen species upon illumination, which allows them 
to act as a potent photosensitizer. These tumor-specific photosensitizers 
are used in photodynamic therapy.55 It involves photosensitizer and 
illumination of specific wavelength light, is an alternate tumor ablative 
treatment that can exert a robust cytotoxic action on malignant cells.56 To 
replace the conventional invasive treatment for removing breast cancer 
cells recently, nanomaterials have been employed in photodynamic 
therapy.57-65  Biosensors can detect tumor indicators or markers even at 
low concentrations as compared to conventional imaging; and several 
studies have highlighted the utilization and advantages of using carbon 
nanotubes (CNTs) as biosensors.66-69

DIAGNOSTIC AND PROGNOSTIC BREAST 
CANCER BIOMARKER AND NANO-BASED 
PROFILING OF BIOMARKERS
Cancer expresses tissue-specific protein biomarkers that can detect 
different types of cancers. Biomarkers have all the information on tumor 
types and can be potential prognostic and diagnostic predictors.70

HER2
Human Epidermal Growth Factor Receptor-2 is a tyrosine kinase 
transmembrane receptor  and is a potential predictive and prognostic 
biomarker in breast cancer.71 Slamon et al. have found that those 
breast cancers in which HER2 is overexpressed are less responsive to 
chemotherapy.72 HER2 subtype tumors account for 20% to 30% of breast 
cancer patients and are also linked with enhanced chemo-resistance.73-74 
Trastuzumab (Herceptin®) is a monoclonal antibody that targets the 
HER2 receptor.75 It has two specific antigen-binding sites inhibiting 
the dimerization of HER2 and the activation of tyrosine-kinase.77 The 
clinical data of HER2-positive patients treated with Trastuzumab in 
primary and metastatic stages showed an improved response and lower 
recurrence77-79 Studies have also suggested that HER2-targeted therapy 
in cancer patients reduces the mortality rate by one-third. Though 
the development of the monoclonal antibody Trastuzumab increased 
prognosis in patients, few other patients have shown resistance and 
advance in disease progression.80 Lapatinib and pertuzumab are 
alternative monoclonal antibodies used in Trastuzumab-resistant breast 
cancer cells.80

Estrogen Receptor
The estrogen receptor (ER) is considered the most important 
biomarker for classifying breast cancer, and ER-positive patients show 
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documented the properties of quantum dots in immunostaining of 
the tissues. This method has the advantage of multicolor excitation, 
better brightness, and stability than photobleaching.99 Yezhelev et al.  
reported conjugation of the quantum dots with breast cancer 
biomarkers ER, PR, and HER2. The multiplexed detection of these 
biomarkers in single paraffin-embedded tissue is closely correlated 
with immunohistochemistry, western blotting, and fluorescent in-situ 
hybridization (FISH). It was also suggested that quantum dots-based 
technology could be used for diagnostic applications with further 
improvements.99 The nanocrystal-based quantum dots offer advantages 
over conventional imaging approaches, including signal amplification, 
enhanced binding affinity, specificity, and targeting efficiency. In situ 
hybridization (FISH) used the quantum dots-based fluorescence to 
detect HER2 biomarkers in breast cancer. It was found that the quantum 
dot model has more photostability than other probes like fluorescein or 
texas red.59

Wang et al. demonstrated molecular sentinel (MS) probes to detect 
breast cancer biomarkers HER2 and Ki67. The surface-enhanced 
Raman Scattering-based molecular sentinel (SERS) nanoprobes 
have enhanced specificity in breast cancer diagnosis. The MS-based 
nanoprobe technique is valuable for multiplexed DNA detection and 
high throughput-bioassays in cancer.100, 101

FUTURE PERSPECTIVE
With their unique biological properties and tunable surface 
characteristics, nanoparticles provide enhanced opportunities to 
improve breast cancer diagnosis and treatment. Many nanotechnology 
applications have transformed clinical oncology through enhanced 
detection, diagnosis, drug delivery, and treatment. This review has 
discussed various applications of nanoparticles in cancer therapy, current 
limitations, and future perspectives to improve the nanomedicine 
translation from bench to bedside.

CONCLUSION
To translate laboratory research of nanoparticles-based cancer 
therapeutics into clinical trials, some of the hurdles should be overcome, 
including improving concentration and encapsulation efficiency. It is 
essential to characterize the nanoparticles for their safety by analyzing 
their physiochemical, pharmacological, and immunological properties 
before being approved for clinical trials. The most challenging 
impediment to using nanoparticles associated with their use is toxicity; 
therefore, short-term and long-term studies should be performed in cell 
culture and animal models to assess their human use.
Another compounding factor that hinders the scaling-up of nanoparticle 
formulation for clinical use is batch-to-batch variation and biological 
equivalence. The improved strategies of a nanoformulation-based system 

to deliver therapeutics when breast cancer cells spread to bone, lung, 
liver, and breast should be invented to improve the patient outcome. 
Overcoming these challenges will pave for the augmented role of 
nanoparticles in the fight against cancer.
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