Highly Efficient Adsorption and Removal of Amoxicillin from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite

  • Ferdos Kord Mostafapour Department of Environmental Health Engineering, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, IRAN.
  • Maryam Bazi Student Research Committee, Zahedan University of Medical Sciences, Zahedan, IRAN.
  • Shaziya Haseeb Siddiqui Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh, INDIA.
  • Hossein Bagheri Department of Medical Language, Zahedan University of Medical Sciences, Zahedan, IRAN.
  • Davoud Balarak Department of Environmental Health Engineering, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, IRAN.
Keywords: Amoxicillin, Magnetic graphene oxide, Thermodynamics, Adsorption, Nanocomposite

Abstract

Background: Antibiotics have lasting effects on the environment. Among the properties of these substances are non-biodegradable, carcinogenic, high toxicity, and an increase in antibiotic-resistant bacteria. Therefore, they should be removed from aqueous solutions and the point of this think was to adsorb amoxicillin (AMO) by magnetic graphene oxide nanocomposite (MGO). Methods: The adsorption behavior of AMO was studied in a series of batch experiments as a function of pH (3-11), contact time (0-120 min), and AMO concentration (10-100 mg/L) different MGO dosages (0.1-1 g/L). The structures of MGO were confirmed by scanning electron microscope (SEM), and the X-ray diffraction (XRD). Results: The results revealed in optimized conditions (pH=3, contact time=75 min, AMO concentration= 10mg/L and adsorbent dose=0.75 g/L) maximum adsorption capacity and removal efficiency of AMO were 98.41 mg/g, respectively. The thermodynamical parameters showed that the sorption method was endothermal and spontaneous. Conclusion: MGO nanoparticles have extended capabilities such as easy and rapid separation from solution and high potential in removing AMO, so, it can be introduced as an appropriate adsorbent for removal of this antibiotics from water and wastewater.

Downloads

Download data is not yet available.
Effect of initial AMO concentration on removal percentage of AMO (time=75 min, pH=3, tem: 25°C and MGO dose =0.75 g/L).
Published
2021-12-28
How to Cite
1.
Mostafapour F, Bazi M, Siddiqui S, Bagheri H, Balarak D. Highly Efficient Adsorption and Removal of Amoxicillin from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite. ijpi [Internet]. 28Dec.2021 [cited 21Jan.2022];11(4):384-8. Available from: https://jpionline.org/index.php/ijpi/article/view/1176